aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/kernels/reduce.cc
blob: 4732a37a65a37a295f0041634b65b9b5460a547c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <string.h>
#include <limits>
#include <vector>
#include "tensorflow/contrib/lite/c/builtin_op_data.h"
#include "tensorflow/contrib/lite/c/c_api_internal.h"
#include "tensorflow/contrib/lite/kernels/internal/quantization_util.h"
#include "tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/contrib/lite/kernels/internal/tensor.h"
#include "tensorflow/contrib/lite/kernels/kernel_util.h"
#include "tensorflow/contrib/lite/kernels/op_macros.h"

namespace tflite {
namespace ops {
namespace builtin {
namespace reduce {

// This file has reference implementation of reduce_* operators.
enum KernelType {
  kReference,
};

struct OpContext {
  OpContext(TfLiteContext* context, TfLiteNode* node) {
    params = reinterpret_cast<TfLiteReducerParams*>(node->builtin_data);
    input = GetInput(context, node, 0);
    axis = GetInput(context, node, 1);
    output = GetOutput(context, node, 0);
  }
  TfLiteReducerParams* params;
  const TfLiteTensor* input;
  const TfLiteTensor* axis;
  TfLiteTensor* output;
};

void* Init(TfLiteContext* context, const char* buffer, size_t length) {
  // Creates two temp tensors to store index and axis for internal
  // implementation only.
  auto* scratch_tensor_index = new int;
  context->AddTensors(context, 3, scratch_tensor_index);
  return scratch_tensor_index;
}

void Free(TfLiteContext* context, void* buffer) {
  delete reinterpret_cast<int*>(buffer);
}

// Resizes the temp tensor that stores resolved axis.
TfLiteStatus ResizeTempAxis(TfLiteContext* context, OpContext* op_context,
                            TfLiteTensor* resolved_axis) {
  TfLiteIntArray* axis_size = TfLiteIntArrayCreate(1);
  axis_size->data[0] = static_cast<int>(NumElements(op_context->axis));
  return context->ResizeTensor(context, resolved_axis, axis_size);
}

// Resizes the temp tensor that stores temp sum of reduced elements.
TfLiteStatus ResizeTempSum(TfLiteContext* context, OpContext* op_context,
                           TfLiteTensor* temp_sum) {
  TfLiteIntArray* size = TfLiteIntArrayCreate(1);
  size->data[0] = static_cast<int>(NumElements(op_context->output));
  return context->ResizeTensor(context, temp_sum, size);
}

// Resizes output array based on the input size and resolved axis.
TfLiteStatus ResizeOutputTensor(TfLiteContext* context, OpContext* op_context) {
  size_t num_axis = NumElements(op_context->axis);
  const TfLiteIntArray* input_dims = op_context->input->dims;
  int input_num_dims = NumDimensions(op_context->input);
  if (input_num_dims == 0) {
    return context->ResizeTensor(context, op_context->output,
                                 TfLiteIntArrayCreate(0));
  }
  const int* axis = GetTensorData<int>(op_context->axis);
  if (op_context->params->keep_dims) {
    TfLiteIntArray* output_dims = TfLiteIntArrayCreate(input_num_dims);
    for (int idx = 0; idx < input_num_dims; ++idx) {
      bool is_axis = false;
      for (int axis_idx = 0; axis_idx < num_axis; ++axis_idx) {
        if (axis[axis_idx] == idx || axis[axis_idx] + input_num_dims == idx) {
          is_axis = true;
          break;
        }
      }
      if (is_axis) {
        output_dims->data[idx] = 1;
      } else {
        output_dims->data[idx] = input_dims->data[idx];
      }
    }
    return context->ResizeTensor(context, op_context->output, output_dims);
  } else {
    // Calculates size of reducing axis.
    int num_reduce_axis = num_axis;
    for (int i = 0; i < num_axis; ++i) {
      int current = axis[i];
      if (current < 0) {
        current += input_num_dims;
      }
      TF_LITE_ENSURE(context, current >= 0 && current < input_num_dims);
      for (int j = 0; j < i; ++j) {
        int previous = axis[j];
        if (previous < 0) {
          previous += input_num_dims;
        }
        if (current == previous) {
          --num_reduce_axis;
          break;
        }
      }
    }
    // Determines output dimensions.
    TfLiteIntArray* output_dims =
        TfLiteIntArrayCreate(input_num_dims - num_reduce_axis);
    int num_skip_axis = 0;
    for (int idx = 0; idx < input_num_dims; ++idx) {
      bool is_axis = false;
      for (int axis_idx = 0; axis_idx < num_axis; ++axis_idx) {
        if (axis[axis_idx] == idx || axis[axis_idx] + input_num_dims == idx) {
          ++num_skip_axis;
          is_axis = true;
          break;
        }
      }
      if (!is_axis) {
        output_dims->data[idx - num_skip_axis] = input_dims->data[idx];
      }
    }
    return context->ResizeTensor(context, op_context->output, output_dims);
  }
}

// Initializes temp tensors to store index and resolved axis.
TfLiteStatus InitializeTemporaries(TfLiteContext* context, TfLiteNode* node,
                                   OpContext* op_context) {
  // Creates a temp index to iterate through input data.
  int* scratch_tensor_index = reinterpret_cast<int*>(node->user_data);
  TfLiteIntArrayFree(node->temporaries);
  node->temporaries = TfLiteIntArrayCreate(3);
  node->temporaries->data[0] = *scratch_tensor_index;
  TfLiteTensor* scratch_tensor = GetTemporary(context, node, /*index=*/0);
  scratch_tensor->type = kTfLiteInt32;
  scratch_tensor->allocation_type = kTfLiteArenaRw;
  TfLiteIntArray* index_size = TfLiteIntArrayCreate(1);
  index_size->data[0] = NumDimensions(op_context->input);
  TF_LITE_ENSURE_OK(context,
                    context->ResizeTensor(context, scratch_tensor, index_size));

  // Creates a temp tensor to store resolved axis given input data.
  node->temporaries->data[1] = *scratch_tensor_index + 1;
  TfLiteTensor* resolved_axis = GetTemporary(context, node, /*index=*/1);
  resolved_axis->type = kTfLiteInt32;
  // Creates a temp tensor to store temp sums when calculating mean.
  node->temporaries->data[2] = *scratch_tensor_index + 2;
  TfLiteTensor* temp_sum = GetTemporary(context, node, /*index=*/2);
  switch (op_context->input->type) {
    case kTfLiteFloat32:
      temp_sum->type = kTfLiteFloat32;
      break;
    case kTfLiteInt32:
      temp_sum->type = kTfLiteInt64;
      break;
    case kTfLiteInt64:
      temp_sum->type = kTfLiteInt64;
      break;
    case kTfLiteUInt8:
      temp_sum->type = kTfLiteInt32;
      break;
    case kTfLiteBool:
      temp_sum->type = kTfLiteBool;
      break;
    default:
      return kTfLiteError;
  }
  return kTfLiteOk;
}

TfLiteStatus PrepareSimple(TfLiteContext* context, TfLiteNode* node) {
  TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
  TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);

  OpContext op_context(context, node);
  TF_LITE_ENSURE_OK(context, InitializeTemporaries(context, node, &op_context));

  TfLiteTensor* resolved_axis = GetTemporary(context, node, /*index=*/1);
  // Leaves work to Eval if axis is not constant; else resizes output.
  if (!IsConstantTensor(op_context.axis)) {
    SetTensorToDynamic(op_context.output);
    SetTensorToDynamic(resolved_axis);
    return kTfLiteOk;
  }
  resolved_axis->allocation_type = kTfLiteArenaRw;
  TF_LITE_ENSURE_OK(context,
                    ResizeTempAxis(context, &op_context, resolved_axis));
  TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, &op_context));
  return kTfLiteOk;
}

TfLiteStatus PrepareAny(TfLiteContext* context, TfLiteNode* node) {
  TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
  const TfLiteTensor* input = GetInput(context, node, 0);
  TF_LITE_ENSURE_EQ(context, input->type, kTfLiteBool);
  return PrepareSimple(context, node);
}

TfLiteStatus PrepareMeanOrSum(TfLiteContext* context, TfLiteNode* node) {
  TF_LITE_ENSURE_OK(context, PrepareSimple(context, node));

  // reduce_mean requires a buffer to store intermediate sum result.
  OpContext op_context(context, node);
  TfLiteTensor* temp_sum = GetTemporary(context, node, /*index=*/2);
  if (!IsConstantTensor(op_context.axis)) {
    SetTensorToDynamic(temp_sum);
    return kTfLiteOk;
  }
  temp_sum->allocation_type = kTfLiteArenaRw;
  return ResizeTempSum(context, &op_context, temp_sum);
}

template <KernelType kernel_type>
TfLiteStatus EvalMean(TfLiteContext* context, TfLiteNode* node) {
  OpContext op_context(context, node);
  int num_axis = static_cast<int>(NumElements(op_context.axis));
  TfLiteTensor* temp_index = GetTemporary(context, node, /*index=*/0);
  TfLiteTensor* resolved_axis = GetTemporary(context, node, /*index=*/1);
  TfLiteTensor* temp_sum = GetTemporary(context, node, /*index=*/2);
  // Resize the output tensor if the output tensor is dynamic.
  if (IsDynamicTensor(op_context.output)) {
    TF_LITE_ENSURE_OK(context,
                      ResizeTempAxis(context, &op_context, resolved_axis));
    TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, &op_context));
    TF_LITE_ENSURE_OK(context, ResizeTempSum(context, &op_context, temp_sum));
  }

#define TF_LITE_MEAN(kernel_type, data_type, temp_data_type)        \
  kernel_type::Mean<>(                                              \
      GetTensorData<data_type>(op_context.input),                   \
      op_context.input->dims->data, op_context.input->dims->size,   \
      GetTensorData<data_type>(op_context.output),                  \
      op_context.output->dims->data, op_context.output->dims->size, \
      GetTensorData<int>(op_context.axis), num_axis,                \
      op_context.params->keep_dims, GetTensorData<int>(temp_index), \
      GetTensorData<int>(resolved_axis),                            \
      GetTensorData<temp_data_type>(temp_sum))

  if (kernel_type == kReference) {
    switch (op_context.input->type) {
      case kTfLiteFloat32:
        TF_LITE_ENSURE(context, TF_LITE_MEAN(reference_ops, float, float));
        break;
      case kTfLiteInt32:
        TF_LITE_ENSURE(context, TF_LITE_MEAN(reference_ops, int, int64_t));
        break;
      case kTfLiteInt64:
        TF_LITE_ENSURE(context, TF_LITE_MEAN(reference_ops, int64_t, int64_t));
        break;
      case kTfLiteUInt8:
        if (op_context.input->params.zero_point ==
                op_context.output->params.zero_point &&
            op_context.input->params.scale == op_context.output->params.scale) {
          TF_LITE_ENSURE(context, TF_LITE_MEAN(reference_ops, uint8_t, int));
        } else {
          TF_LITE_ENSURE(
              context,
              reference_ops::QuantizedMeanOrSum<>(
                  GetTensorData<uint8_t>(op_context.input),
                  op_context.input->params.zero_point,
                  op_context.input->params.scale, op_context.input->dims->data,
                  op_context.input->dims->size,
                  GetTensorData<uint8_t>(op_context.output),
                  op_context.output->params.zero_point,
                  op_context.output->params.scale,
                  op_context.output->dims->data, op_context.output->dims->size,
                  GetTensorData<int>(op_context.axis), num_axis,
                  op_context.params->keep_dims, GetTensorData<int>(temp_index),
                  GetTensorData<int>(resolved_axis),
                  GetTensorData<int>(temp_sum), /*compute_sum=*/false));
        }
        break;
      default:
        return kTfLiteError;
    }
  }
#undef TF_LITE_MEAN
  return kTfLiteOk;
}

// The underlying logic for Reduce Sum/Prod/Max/Min/Any
template <typename T>
TfLiteStatus EvalLogic(TfLiteContext* context, TfLiteNode* node,
                       OpContext* op_context, T init_value,
                       T reducer(const T current, const T in)) {
  int64_t num_axis = NumElements(op_context->axis);
  TfLiteTensor* temp_index = GetTemporary(context, node, /*index=*/0);
  TfLiteTensor* resolved_axis = GetTemporary(context, node, /*index=*/1);
  // Resize the output tensor if the output tensor is dynamic.
  if (IsDynamicTensor(op_context->output)) {
    TF_LITE_ENSURE_OK(context,
                      ResizeTempAxis(context, op_context, resolved_axis));
    TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, op_context));
  }
  if (op_context->input->type == kTfLiteUInt8) {
    TF_LITE_ENSURE_EQ(context, op_context->input->params.scale,
                      op_context->output->params.scale);
    TF_LITE_ENSURE_EQ(context, op_context->input->params.zero_point,
                      op_context->output->params.zero_point);
  }
  TF_LITE_ENSURE(
      context,
      reference_ops::ReduceGeneric<T>(
          GetTensorData<T>(op_context->input), op_context->input->dims->data,
          op_context->input->dims->size, GetTensorData<T>(op_context->output),
          op_context->output->dims->data, op_context->output->dims->size,
          GetTensorData<int>(op_context->axis), num_axis,
          op_context->params->keep_dims, GetTensorData<int>(temp_index),
          GetTensorData<int>(resolved_axis), init_value, reducer));
  return kTfLiteOk;
}

enum ReduceType {
  kSum,
  kProd,
  kMax,
  kMin,
  kAny,
};

// Eval for determined input type and reduce type.
template <typename T>
TfLiteStatus EvalType(TfLiteContext* context, TfLiteNode* node,
                      OpContext* op_context, ReduceType reduce_type) {
  switch (reduce_type) {
    case kSum:
      return EvalLogic<T>(
          context, node, op_context, static_cast<T>(0),
          [](const T current, const T in) -> T { return in + current; });
      break;
    case kProd:
      return EvalLogic<T>(
          context, node, op_context, static_cast<T>(1),
          [](const T current, const T in) -> T { return in * current; });
      break;
    case kMax:
      return EvalLogic<T>(context, node, op_context,
                          std::numeric_limits<T>::lowest(),
                          [](const T current, const T in) -> T {
                            return (in > current) ? in : current;
                          });
      break;
    case kMin:
      return EvalLogic<T>(context, node, op_context,
                          std::numeric_limits<T>::max(),
                          [](const T current, const T in) -> T {
                            return (in < current) ? in : current;
                          });
      break;
    default:
      return kTfLiteError;
  }
}

// Template specialization for bool type
template <>
TfLiteStatus EvalType<bool>(TfLiteContext* context, TfLiteNode* node,
                            OpContext* op_context, ReduceType reduce_type) {
  switch (reduce_type) {
    case kAny:
      return EvalLogic<bool>(context, node, op_context, false,
                             [](const bool current, const bool in) -> bool {
                               return in || current;
                             });
      break;
    default:
      return kTfLiteError;
  }
}

// The entry point that handles input types and then calls template functions to
// handle ReduceType.
template <KernelType kernel_type, ReduceType reduce_type>
TfLiteStatus EvalGeneric(TfLiteContext* context, TfLiteNode* node) {
  if (kernel_type != kReference) {
    return kTfLiteOk;
  }
  OpContext op_context(context, node);
  switch (op_context.input->type) {
    case kTfLiteFloat32:
      return EvalType<float>(context, node, &op_context, reduce_type);
      break;
    case kTfLiteInt32:
      return EvalType<int>(context, node, &op_context, reduce_type);
      break;
    case kTfLiteInt64:
      return EvalType<int64_t>(context, node, &op_context, reduce_type);
      break;
    case kTfLiteUInt8:
      return EvalType<uint8_t>(context, node, &op_context, reduce_type);
      break;
    case kTfLiteBool:
      return EvalType<bool>(context, node, &op_context, reduce_type);
      break;
    default:
      return kTfLiteError;
  }
}

TfLiteStatus EvalSum(TfLiteContext* context, TfLiteNode* node) {
  OpContext op_context(context, node);
  const auto& input = op_context.input;
  const auto& output = op_context.output;
  if (input->type != kTfLiteUInt8 ||
      (input->params.scale == output->params.scale &&
       input->params.zero_point == output->params.zero_point)) {
    return EvalGeneric<kReference, kSum>(context, node);
  } else {
    // Rescaling 8bit reduce sum.
    int num_axis = static_cast<int>(NumElements(op_context.axis));
    TfLiteTensor* temp_index = GetTemporary(context, node, /*index=*/0);
    TfLiteTensor* resolved_axis = GetTemporary(context, node, /*index=*/1);
    TfLiteTensor* temp_sum = GetTemporary(context, node, /*index=*/2);
    // Resize the output tensor if the output tensor is dynamic.
    if (IsDynamicTensor(op_context.output)) {
      TF_LITE_ENSURE_OK(context,
                        ResizeTempAxis(context, &op_context, resolved_axis));
      TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, &op_context));
      TF_LITE_ENSURE_OK(context, ResizeTempSum(context, &op_context, temp_sum));
    }

    TF_LITE_ENSURE(
        context,
        reference_ops::QuantizedMeanOrSum<>(
            GetTensorData<uint8_t>(op_context.input),
            op_context.input->params.zero_point, op_context.input->params.scale,
            op_context.input->dims->data, op_context.input->dims->size,
            GetTensorData<uint8_t>(op_context.output),
            op_context.output->params.zero_point,
            op_context.output->params.scale, op_context.output->dims->data,
            op_context.output->dims->size, GetTensorData<int>(op_context.axis),
            num_axis, op_context.params->keep_dims,
            GetTensorData<int>(temp_index), GetTensorData<int>(resolved_axis),
            GetTensorData<int32>(temp_sum), /*compute_sum=*/true));
  }

  return kTfLiteOk;
}
}  // namespace reduce

TfLiteRegistration* Register_MEAN_REF() {
  static TfLiteRegistration r = {reduce::Init, reduce::Free,
                                 reduce::PrepareMeanOrSum,
                                 reduce::EvalMean<reduce::kReference>};
  return &r;
}

TfLiteRegistration* Register_SUM_REF() {
  static TfLiteRegistration r = {reduce::Init, reduce::Free,
                                 reduce::PrepareMeanOrSum, reduce::EvalSum};
  return &r;
}

TfLiteRegistration* Register_REDUCE_PROD_REF() {
  static TfLiteRegistration r = {
      reduce::Init, reduce::Free, reduce::PrepareSimple,
      reduce::EvalGeneric<reduce::kReference, reduce::kProd>};
  return &r;
}

TfLiteRegistration* Register_REDUCE_MAX_REF() {
  static TfLiteRegistration r = {
      reduce::Init, reduce::Free, reduce::PrepareSimple,
      reduce::EvalGeneric<reduce::kReference, reduce::kMax>};
  return &r;
}

TfLiteRegistration* Register_REDUCE_MIN_REF() {
  static TfLiteRegistration r = {
      reduce::Init, reduce::Free, reduce::PrepareSimple,
      reduce::EvalGeneric<reduce::kReference, reduce::kMin>};
  return &r;
}

TfLiteRegistration* Register_REDUCE_ANY_REF() {
  static TfLiteRegistration r = {
      reduce::Init, reduce::Free, reduce::PrepareAny,
      reduce::EvalGeneric<reduce::kReference, reduce::kAny>};
  return &r;
}

// TODO(kanlig): add optimized implementation of Mean.
TfLiteRegistration* Register_MEAN() { return Register_MEAN_REF(); }
TfLiteRegistration* Register_SUM() { return Register_SUM_REF(); }
TfLiteRegistration* Register_REDUCE_PROD() {
  return Register_REDUCE_PROD_REF();
}
TfLiteRegistration* Register_REDUCE_MAX() { return Register_REDUCE_MAX_REF(); }
TfLiteRegistration* Register_REDUCE_MIN() { return Register_REDUCE_MIN_REF(); }
TfLiteRegistration* Register_REDUCE_ANY() { return Register_REDUCE_ANY_REF(); }

}  // namespace builtin
}  // namespace ops
}  // namespace tflite