aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/kernels/internal/reference/legacy_reference_ops.h
blob: bcf5e4e4f6593ec9bce7acd1fb7082955276ca32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_CONTRIB_LITE_KERNELS_INTERNAL_REFERENCE_LEGACY_REFERENCE_OPS_H_
#define TENSORFLOW_CONTRIB_LITE_KERNELS_INTERNAL_REFERENCE_LEGACY_REFERENCE_OPS_H_

#include <stdint.h>
#include <sys/types.h>

#include "tensorflow/contrib/lite/kernels/internal/common.h"
#include "tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/contrib/lite/kernels/internal/types.h"

namespace tflite {

namespace reference_ops {

inline RuntimeShape DimsToShape(const tflite::Dims<4>& dims) {
  return RuntimeShape(
      {dims.sizes[3], dims.sizes[2], dims.sizes[1], dims.sizes[0]});
}

template <FusedActivationFunctionType Ac>
void L2Normalization(const float* input_data, const Dims<4>& input_dims,
                     float* output_data, const Dims<4>& output_dims) {
  L2Normalization<Ac>(input_data, DimsToShape(input_dims), output_data,
                      DimsToShape(output_dims));
}

inline void L2Normalization(const uint8* input_data, const Dims<4>& input_dims,
                            int32 input_zero_point, uint8* output_data,
                            const Dims<4>& output_dims) {
  L2Normalization(input_data, DimsToShape(input_dims), input_zero_point,
                  output_data, DimsToShape(output_dims));
}

inline void Relu(const float* input_data, const Dims<4>& input_dims,
                 float* output_data, const Dims<4>& output_dims) {
  Relu(input_data, DimsToShape(input_dims), output_data,
       DimsToShape(output_dims));
}

inline void Relu1(const float* input_data, const Dims<4>& input_dims,
                  float* output_data, const Dims<4>& output_dims) {
  Relu1(input_data, DimsToShape(input_dims), output_data,
        DimsToShape(output_dims));
}

inline void Relu6(const float* input_data, const Dims<4>& input_dims,
                  float* output_data, const Dims<4>& output_dims) {
  Relu6(input_data, DimsToShape(input_dims), output_data,
        DimsToShape(output_dims));
}

template <FusedActivationFunctionType Ac>
inline void Add(int left_shift, const uint8* input1_data,
                const Dims<4>& input1_dims, int32 input1_offset,
                int32 input1_multiplier, int input1_shift,
                const uint8* input2_data, const Dims<4>& input2_dims,
                int32 input2_offset, int32 input2_multiplier, int input2_shift,
                int32 output_offset, int32 output_multiplier, int output_shift,
                int32 output_activation_min, int32 output_activation_max,
                uint8* output_data, const Dims<4>& output_dims) {
  constexpr int kReverseShift = -1;
  static_assert(Ac == FusedActivationFunctionType::kNone ||
                    Ac == FusedActivationFunctionType::kRelu ||
                    Ac == FusedActivationFunctionType::kRelu6 ||
                    Ac == FusedActivationFunctionType::kRelu1,
                "");
  TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
  if (Ac == FusedActivationFunctionType::kNone) {
    TFLITE_DCHECK_EQ(output_activation_min, 0);
    TFLITE_DCHECK_EQ(output_activation_max, 255);
  }

  tflite::ArithmeticParams op_params;
  op_params.left_shift = left_shift;
  op_params.input1_offset = input1_offset;
  op_params.input1_multiplier = input1_multiplier;
  op_params.input1_shift = kReverseShift * input1_shift;
  op_params.input2_offset = input2_offset;
  op_params.input2_multiplier = input2_multiplier;
  op_params.input2_shift = kReverseShift * input2_shift;
  op_params.output_offset = output_offset;
  op_params.output_multiplier = output_multiplier;
  op_params.output_shift = kReverseShift * output_shift;
  op_params.quantized_activation_min = output_activation_min;
  op_params.quantized_activation_max = output_activation_max;
  Add(op_params, DimsToShape(input1_dims), input1_data,
      DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
      output_data);
}

template <FusedActivationFunctionType Ac>
void Add(const int32* input1_data, const Dims<4>& input1_dims,
         const int32* input2_data, const Dims<4>& input2_dims,
         int32* output_data, const Dims<4>& output_dims) {
  gemmlowp::ScopedProfilingLabel label("Add/int32");
  TFLITE_DCHECK(Ac == FusedActivationFunctionType::kNone);

  tflite::ArithmeticParams op_params;
  op_params.quantized_activation_min = std::numeric_limits<int32>::min();
  op_params.quantized_activation_max = std::numeric_limits<int32>::max();
  Add(op_params, DimsToShape(input1_dims), input1_data,
      DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
      output_data);
}

template <FusedActivationFunctionType Ac>
inline void BroadcastAdd(int left_shift, const uint8* input1_data,
                         const Dims<4>& input1_dims, int32 input1_offset,
                         int32 input1_multiplier, int input1_shift,
                         const uint8* input2_data, const Dims<4>& input2_dims,
                         int32 input2_offset, int32 input2_multiplier,
                         int input2_shift, int32 output_offset,
                         int32 output_multiplier, int output_shift,
                         int32 output_activation_min,
                         int32 output_activation_max, uint8* output_data,
                         const Dims<4>& output_dims) {
  constexpr int kReverseShift = -1;
  static_assert(Ac == FusedActivationFunctionType::kNone ||
                    Ac == FusedActivationFunctionType::kRelu ||
                    Ac == FusedActivationFunctionType::kRelu6 ||
                    Ac == FusedActivationFunctionType::kRelu1,
                "");
  TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
  if (Ac == FusedActivationFunctionType::kNone) {
    TFLITE_DCHECK_EQ(output_activation_min, 0);
    TFLITE_DCHECK_EQ(output_activation_max, 255);
  }

  tflite::ArithmeticParams op_params;
  op_params.left_shift = left_shift;
  op_params.input1_offset = input1_offset;
  op_params.input1_multiplier = input1_multiplier;
  op_params.input1_shift = kReverseShift * input1_shift;
  op_params.input2_offset = input2_offset;
  op_params.input2_multiplier = input2_multiplier;
  op_params.input2_shift = kReverseShift * input2_shift;
  op_params.output_offset = output_offset;
  op_params.output_multiplier = output_multiplier;
  op_params.output_shift = kReverseShift * output_shift;
  op_params.quantized_activation_min = output_activation_min;
  op_params.quantized_activation_max = output_activation_max;
  BroadcastAdd4DSlow(op_params, DimsToShape(input1_dims), input1_data,
                     DimsToShape(input2_dims), input2_data,
                     DimsToShape(output_dims), output_data);
}

template <FusedActivationFunctionType Ac>
void Add(const float* input1_data, const Dims<4>& input1_dims,
         const float* input2_data, const Dims<4>& input2_dims,
         float* output_data, const Dims<4>& output_dims) {
  float output_activation_min, output_activation_max;
  GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);

  tflite::ArithmeticParams op_params;
  op_params.float_activation_min = output_activation_min;
  op_params.float_activation_max = output_activation_max;
  Add(op_params, DimsToShape(input1_dims), input1_data,
      DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
      output_data);
}

template <typename T>
void BroadcastAdd(const T* input1_data, const Dims<4>& input1_dims,
                  const T* input2_data, const Dims<4>& input2_dims,
                  T output_activation_min, T output_activation_max,
                  T* output_data, const Dims<4>& output_dims) {
  tflite::ArithmeticParams op_params;
  op_params.float_activation_min = output_activation_min;
  op_params.float_activation_max = output_activation_max;
  BroadcastAdd4DSlow(op_params, DimsToShape(input1_dims), input1_data,
                     DimsToShape(input2_dims), input2_data,
                     DimsToShape(output_dims), output_data);
}

template <FusedActivationFunctionType Ac>
inline void BroadcastAddFivefold(
    int y0, int y1, int y2, int y3, int y4, int left_shift,
    const uint8* input1_data, const Dims<4>& input1_dims, int32 input1_offset,
    int32 input1_multiplier, int input1_shift, const uint8* input2_data,
    const Dims<4>& input2_dims, int32 input2_offset, int32 input2_multiplier,
    int input2_shift, int32 output_offset, int32 output_multiplier,
    int output_shift, int32 output_activation_min, int32 output_activation_max,
    uint8* output_data, const Dims<4>& output_dims) {
  constexpr int kReverseShift = -1;
  static_assert(Ac == FusedActivationFunctionType::kNone ||
                    Ac == FusedActivationFunctionType::kRelu ||
                    Ac == FusedActivationFunctionType::kRelu6 ||
                    Ac == FusedActivationFunctionType::kRelu1,
                "");
  TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
  if (Ac == FusedActivationFunctionType::kNone) {
    TFLITE_DCHECK_EQ(output_activation_min, 0);
    TFLITE_DCHECK_EQ(output_activation_max, 255);
  }
  tflite::ArithmeticParams op_params;
  op_params.broadcast_category =
      tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast;
  op_params.left_shift = left_shift;
  op_params.input1_offset = input1_offset;
  op_params.input1_multiplier = input1_multiplier;
  op_params.input1_shift = kReverseShift * input1_shift;
  op_params.input2_offset = input2_offset;
  op_params.input2_multiplier = input2_multiplier;
  op_params.input2_shift = kReverseShift * input2_shift;
  op_params.output_offset = output_offset;
  op_params.output_multiplier = output_multiplier;
  op_params.output_shift = kReverseShift * output_shift;
  op_params.quantized_activation_min = output_activation_min;
  op_params.quantized_activation_max = output_activation_max;
  op_params.broadcast_shape[4] = y0;
  op_params.broadcast_shape[3] = y1;
  op_params.broadcast_shape[2] = y2;
  op_params.broadcast_shape[1] = y3;
  op_params.broadcast_shape[0] = y4;
  BroadcastAddFivefold(op_params, DimsToShape(input1_dims), input1_data,
                       DimsToShape(input2_dims), input2_data,
                       DimsToShape(output_dims), output_data);
}

// legacy, for compatibility with old checked-in code
template <FusedActivationFunctionType Ac, typename T>
void BroadcastAdd(const T* input1_data, const Dims<4>& input1_dims,
                  const T* input2_data, const Dims<4>& input2_dims,
                  T* output_data, const Dims<4>& output_dims) {
  T output_activation_min, output_activation_max;
  GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);

  BroadcastAdd(input1_data, input1_dims, input2_data, input2_dims,
               output_activation_min, output_activation_max, output_data,
               output_dims);
}

template <FusedActivationFunctionType Ac>
inline void Add(const int16* input1_data, const Dims<4>& input1_dims,
                int input1_shift, const int16* input2_data,
                const Dims<4>& input2_dims, int input2_shift,
                int16 output_activation_min, int16 output_activation_max,
                int16* output_data, const Dims<4>& output_dims) {
  static_assert(Ac == FusedActivationFunctionType::kNone ||
                    Ac == FusedActivationFunctionType::kRelu ||
                    Ac == FusedActivationFunctionType::kRelu6 ||
                    Ac == FusedActivationFunctionType::kRelu1,
                "");
  TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
  if (Ac == FusedActivationFunctionType::kNone) {
    TFLITE_DCHECK_EQ(output_activation_min, -32768);
    TFLITE_DCHECK_EQ(output_activation_max, 32767);
  }

  tflite::ArithmeticParams op_params;
  op_params.input1_shift = kReverseShift * input1_shift;
  op_params.input2_shift = kReverseShift * input2_shift;
  op_params.quantized_activation_min = output_activation_min;
  op_params.quantized_activation_max = output_activation_max;
  Add(op_params, DimsToShape(input1_dims), input1_data,
      DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
      output_data);
}

inline void Sub(const float* input1_data, const Dims<4>& input1_dims,
                const float* input2_data, const Dims<4>& input2_dims,
                float* output_data, const Dims<4>& output_dims) {
  float output_activation_min, output_activation_max;
  GetActivationMinMax(FusedActivationFunctionType::kNone,
                      &output_activation_min, &output_activation_max);
  tflite::ArithmeticParams op_params;
  op_params.float_activation_min = output_activation_min;
  op_params.float_activation_max = output_activation_max;
  Sub(op_params, DimsToShape(input1_dims), input1_data,
      DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
      output_data);
}

template <typename T>
void Sub(const T* input1_data, const Dims<4>& input1_dims, const T* input2_data,
         const Dims<4>& input2_dims, T* output_data,
         const Dims<4>& output_dims) {
  tflite::ArithmeticParams op_params;
  op_params.quantized_activation_min = std::numeric_limits<T>::min();
  op_params.quantized_activation_max = std::numeric_limits<T>::max();
  Sub(op_params, DimsToShape(input1_dims), input1_data,
      DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
      output_data);
}

inline void AveragePool(const float* input_data, const Dims<4>& input_dims,
                        int stride_width, int stride_height, int pad_width,
                        int pad_height, int kwidth, int kheight,
                        float output_activation_min,
                        float output_activation_max, float* output_data,
                        const Dims<4>& output_dims) {
  tflite::PoolParams params;
  params.stride_height = stride_height;
  params.stride_width = stride_width;
  params.filter_height = kheight;
  params.filter_width = kwidth;
  params.padding_values.height = pad_height;
  params.padding_values.width = pad_width;
  params.float_activation_min = output_activation_min;
  params.float_activation_max = output_activation_max;
  AveragePool(params, DimsToShape(input_dims), input_data,
              DimsToShape(output_dims), output_data);
}

// legacy, for compatibility with old checked-in code
template <FusedActivationFunctionType Ac>
void AveragePool(const float* input_data, const Dims<4>& input_dims,
                 int stride_width, int stride_height, int pad_width,
                 int pad_height, int kwidth, int kheight, float* output_data,
                 const Dims<4>& output_dims) {
  float output_activation_min, output_activation_max;
  GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);

  AveragePool(input_data, input_dims, stride_width, stride_height, pad_width,
              pad_height, kwidth, kheight, output_activation_min,
              output_activation_max, output_data, output_dims);
}

// legacy, for compatibility with old checked-in code
template <FusedActivationFunctionType Ac>
void AveragePool(const float* input_data, const Dims<4>& input_dims, int stride,
                 int pad_width, int pad_height, int filter_width,
                 int filter_height, float* output_data,
                 const Dims<4>& output_dims) {
  AveragePool<Ac>(input_data, input_dims, stride, stride, pad_width, pad_height,
                  filter_width, filter_height, output_data, output_dims);
}

inline void AveragePool(const uint8* input_data, const Dims<4>& input_dims,
                        int stride_width, int stride_height, int pad_width,
                        int pad_height, int filter_width, int filter_height,
                        int32 output_activation_min,
                        int32 output_activation_max, uint8* output_data,
                        const Dims<4>& output_dims) {
  tflite::PoolParams params;
  params.stride_height = stride_height;
  params.stride_width = stride_width;
  params.filter_height = filter_height;
  params.filter_width = filter_width;
  params.padding_values.height = pad_height;
  params.padding_values.width = pad_width;
  params.quantized_activation_min = output_activation_min;
  params.quantized_activation_max = output_activation_max;
  AveragePool(params, DimsToShape(input_dims), input_data,
              DimsToShape(output_dims), output_data);
}

// legacy, for compatibility with old checked-in code
template <FusedActivationFunctionType Ac>
void AveragePool(const uint8* input_data, const Dims<4>& input_dims,
                 int stride_width, int stride_height, int pad_width,
                 int pad_height, int filter_width, int filter_height,
                 int32 output_activation_min, int32 output_activation_max,
                 uint8* output_data, const Dims<4>& output_dims) {
  static_assert(Ac == FusedActivationFunctionType::kNone ||
                    Ac == FusedActivationFunctionType::kRelu ||
                    Ac == FusedActivationFunctionType::kRelu6 ||
                    Ac == FusedActivationFunctionType::kRelu1,
                "");
  if (Ac == FusedActivationFunctionType::kNone) {
    TFLITE_DCHECK_EQ(output_activation_min, 0);
    TFLITE_DCHECK_EQ(output_activation_max, 255);
  }
  AveragePool(input_data, input_dims, stride_width, stride_height, pad_width,
              pad_height, filter_width, filter_height, output_activation_min,
              output_activation_max, output_data, output_dims);
}

// legacy, for compatibility with old checked-in code
template <FusedActivationFunctionType Ac>
void AveragePool(const uint8* input_data, const Dims<4>& input_dims, int stride,
                 int pad_width, int pad_height, int filter_width,
                 int filter_height, int32 output_activation_min,
                 int32 output_activation_max, uint8* output_data,
                 const Dims<4>& output_dims) {
  AveragePool<Ac>(input_data, input_dims, stride, stride, pad_width, pad_height,
                  filter_width, filter_height, output_activation_min,
                  output_activation_max, output_data, output_dims);
}

inline void MaxPool(const float* input_data, const Dims<4>& input_dims,
                    int stride_width, int stride_height, int pad_width,
                    int pad_height, int kwidth, int kheight,
                    float output_activation_min, float output_activation_max,
                    float* output_data, const Dims<4>& output_dims) {
  tflite::PoolParams params;
  params.stride_height = stride_height;
  params.stride_width = stride_width;
  params.filter_height = kheight;
  params.filter_width = kwidth;
  params.padding_values.height = pad_height;
  params.padding_values.width = pad_width;
  params.float_activation_min = output_activation_min;
  params.float_activation_max = output_activation_max;
  MaxPool(params, DimsToShape(input_dims), input_data, DimsToShape(output_dims),
          output_data);
}

// legacy, for compatibility with old checked-in code
template <FusedActivationFunctionType Ac>
void MaxPool(const float* input_data, const Dims<4>& input_dims,
             int stride_width, int stride_height, int pad_width, int pad_height,
             int kwidth, int kheight, float* output_data,
             const Dims<4>& output_dims) {
  float output_activation_min, output_activation_max;
  GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);
  MaxPool(input_data, input_dims, stride_width, stride_height, pad_width,
          pad_height, kwidth, kheight, output_activation_min,
          output_activation_max, output_data, output_dims);
}

// legacy, for compatibility with old checked-in code
template <FusedActivationFunctionType Ac>
void MaxPool(const float* input_data, const Dims<4>& input_dims, int stride,
             int pad_width, int pad_height, int filter_width, int filter_height,
             float* output_data, const Dims<4>& output_dims) {
  MaxPool<Ac>(input_data, input_dims, stride, stride, pad_width, pad_height,
              filter_width, filter_height, output_data, output_dims);
}

inline void MaxPool(const uint8* input_data, const Dims<4>& input_dims,
                    int stride_width, int stride_height, int pad_width,
                    int pad_height, int filter_width, int filter_height,
                    int32 output_activation_min, int32 output_activation_max,
                    uint8* output_data, const Dims<4>& output_dims) {
  PoolParams params;
  params.stride_height = stride_height;
  params.stride_width = stride_width;
  params.filter_height = filter_height;
  params.filter_width = filter_width;
  params.padding_values.height = pad_height;
  params.padding_values.width = pad_width;
  params.quantized_activation_min = output_activation_min;
  params.quantized_activation_max = output_activation_max;
  MaxPool(params, DimsToShape(input_dims), input_data, DimsToShape(output_dims),
          output_data);
}

// legacy, for compatibility with old checked-in code
template <FusedActivationFunctionType Ac>
void MaxPool(const uint8* input_data, const Dims<4>& input_dims,
             int stride_width, int stride_height, int pad_width, int pad_height,
             int filter_width, int filter_height, int32 output_activation_min,
             int32 output_activation_max, uint8* output_data,
             const Dims<4>& output_dims) {
  static_assert(Ac == FusedActivationFunctionType::kNone ||
                    Ac == FusedActivationFunctionType::kRelu ||
                    Ac == FusedActivationFunctionType::kRelu6 ||
                    Ac == FusedActivationFunctionType::kRelu1,
                "");
  if (Ac == FusedActivationFunctionType::kNone) {
    TFLITE_DCHECK_EQ(output_activation_min, 0);
    TFLITE_DCHECK_EQ(output_activation_max, 255);
  }
  MaxPool(input_data, input_dims, stride_width, stride_height, pad_width,
          pad_height, filter_width, filter_height, output_activation_min,
          output_activation_max, output_data, output_dims);
}

// legacy, for compatibility with old checked-in code
template <FusedActivationFunctionType Ac>
void MaxPool(const uint8* input_data, const Dims<4>& input_dims, int stride,
             int pad_width, int pad_height, int filter_width, int filter_height,
             int32 output_activation_min, int32 output_activation_max,
             uint8* output_data, const Dims<4>& output_dims) {
  MaxPool<Ac>(input_data, input_dims, stride, stride, pad_width, pad_height,
              filter_width, filter_height, output_activation_min,
              output_activation_max, output_data, output_dims);
}

inline void L2Pool(const float* input_data, const Dims<4>& input_dims,
                   int stride_width, int stride_height, int pad_width,
                   int pad_height, int filter_width, int filter_height,
                   float output_activation_min, float output_activation_max,
                   float* output_data, const Dims<4>& output_dims) {
  PoolParams params;
  params.stride_height = stride_height;
  params.stride_width = stride_width;
  params.filter_height = filter_height;
  params.filter_width = filter_width;
  params.padding_values.height = pad_height;
  params.padding_values.width = pad_width;
  params.float_activation_min = output_activation_min;
  params.float_activation_max = output_activation_max;
  L2Pool(params, DimsToShape(input_dims), input_data, DimsToShape(output_dims),
         output_data);
}

// legacy, for compatibility with old checked-in code
template <FusedActivationFunctionType Ac>
void L2Pool(const float* input_data, const Dims<4>& input_dims,
            int stride_width, int stride_height, int pad_width, int pad_height,
            int filter_width, int filter_height, float* output_data,
            const Dims<4>& output_dims) {
  float output_activation_min, output_activation_max;
  GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);
  L2Pool(input_data, input_dims, stride_width, stride_height, pad_width,
         pad_height, filter_width, filter_height, output_activation_min,
         output_activation_max, output_data, output_dims);
}

// legacy, for compatibility with old checked-in code
template <FusedActivationFunctionType Ac>
void L2Pool(const float* input_data, const Dims<4>& input_dims, int stride,
            int pad_width, int pad_height, int filter_width, int filter_height,
            float* output_data, const Dims<4>& output_dims) {
  L2Pool<Ac>(input_data, input_dims, stride, stride, pad_width, pad_height,
             filter_width, filter_height, output_data, output_dims);
}

inline void Softmax(const float* input_data, const Dims<4>& input_dims,
                    float beta, float* output_data,
                    const Dims<4>& output_dims) {
  Softmax(input_data, DimsToShape(input_dims), beta, output_data,
          DimsToShape(output_dims));
}

inline void Softmax(const uint8* input_data, const Dims<4>& input_dims,
                    int32 input_beta_multiplier, int32 input_beta_left_shift,
                    int diff_min, uint8* output_data,
                    const Dims<4>& output_dims) {
  Softmax(input_data, DimsToShape(input_dims), input_beta_multiplier,
          input_beta_left_shift, diff_min, output_data,
          DimsToShape(output_dims));
}

inline void LogSoftmax(const float* input_data, const Dims<4>& input_dims,
                       float* output_data, const Dims<4>& output_dims) {
  LogSoftmax(input_data, DimsToShape(input_dims), output_data,
             DimsToShape(output_dims));
}

inline void LogSoftmax(const uint8* input_data, const Dims<4>& input_dims,
                       int32 input_multiplier, int32 input_left_shift,
                       int32 reverse_scaling_divisor,
                       int32 reverse_scaling_right_shift, int diff_min,
                       uint8* output_data, const Dims<4>& output_dims) {
  LogSoftmax(input_data, DimsToShape(input_dims), input_multiplier,
             input_left_shift, reverse_scaling_divisor,
             reverse_scaling_right_shift, diff_min, output_data,
             DimsToShape(output_dims));
}

inline void Logistic(const float* input_data, const Dims<4>& input_dims,
                     float* output_data, const Dims<4>& output_dims) {
  Logistic(input_data, DimsToShape(input_dims), output_data,
           DimsToShape(output_dims));
}

inline void Logistic(const uint8* input_data, const Dims<4>& input_dims,
                     int32 input_zero_point, int32 input_range_radius,
                     int32 input_multiplier, int input_left_shift,
                     uint8* output_data, const Dims<4>& output_dims) {
  Logistic(input_data, DimsToShape(input_dims), input_zero_point,
           input_range_radius, input_multiplier, input_left_shift, output_data,
           DimsToShape(output_dims));
}

inline void Logistic(const int16* input_data, const Dims<4>& input_dims,
                     int16* output_data, const Dims<4>& output_dims) {
  Logistic(input_data, DimsToShape(input_dims), output_data,
           DimsToShape(output_dims));
}

inline void Tanh(const float* input_data, const Dims<4>& input_dims,
                 float* output_data, const Dims<4>& output_dims) {
  Tanh(input_data, DimsToShape(input_dims), output_data,
       DimsToShape(output_dims));
}

inline void Tanh(const uint8* input_data, const Dims<4>& input_dims,
                 int32 input_zero_point, int32 input_range_radius,
                 int32 input_multiplier, int input_left_shift,
                 uint8* output_data, const Dims<4>& output_dims) {
  Tanh(input_data, DimsToShape(input_dims), input_zero_point,
       input_range_radius, input_multiplier, input_left_shift, output_data,
       DimsToShape(output_dims));
}

inline void Tanh(const int16* input_data, const Dims<4>& input_dims,
                 int input_left_shift, int16* output_data,
                 const Dims<4>& output_dims) {
  Tanh(input_data, DimsToShape(input_dims), input_left_shift, output_data,
       DimsToShape(output_dims));
}

}  // namespace reference_ops
}  // namespace tflite
#endif  // TENSORFLOW_CONTRIB_LITE_KERNELS_INTERNAL_REFERENCE_LEGACY_REFERENCE_OPS_H_