aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/kernels/div.cc
blob: 8d4bb5100664a3397c5d70809884294551aedd4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/lite/c/builtin_op_data.h"
#include "tensorflow/contrib/lite/c/c_api_internal.h"
#include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h"
#include "tensorflow/contrib/lite/kernels/internal/quantization_util.h"
#include "tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/contrib/lite/kernels/internal/tensor.h"
#include "tensorflow/contrib/lite/kernels/kernel_util.h"
#include "tensorflow/contrib/lite/kernels/op_macros.h"

namespace tflite {
namespace ops {
namespace builtin {
namespace div {

// This file has three implementation of Div.
enum KernelType {
  kReference,
  kGenericOptimized,  // Neon-free
  kNeonOptimized,
};

constexpr int kInputTensor1 = 0;
constexpr int kInputTensor2 = 1;
constexpr int kOutputTensor = 0;

struct OpData {
  bool requires_broadcast;
};

void* Init(TfLiteContext* context, const char* buffer, size_t length) {
  auto* data = new OpData;
  data->requires_broadcast = false;
  return data;
}

void Free(TfLiteContext* context, void* buffer) {
  delete reinterpret_cast<OpData*>(buffer);
}

TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
  OpData* data = reinterpret_cast<OpData*>(node->user_data);

  TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
  TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);

  const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
  const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
  TfLiteTensor* output = GetOutput(context, node, kOutputTensor);

  TF_LITE_ENSURE_EQ(context, input1->type, input2->type);
  output->type = input2->type;

  data->requires_broadcast = !HaveSameShapes(input1, input2);

  TfLiteIntArray* output_size = nullptr;
  if (data->requires_broadcast) {
    TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
                                   context, input1, input2, &output_size));
  } else {
    output_size = TfLiteIntArrayCopy(input1->dims);
  }

  return context->ResizeTensor(context, output, output_size);
}

template <KernelType kernel_type>
void EvalDiv(TfLiteContext* context, TfLiteNode* node, TfLiteDivParams* params,
             const OpData* data, const TfLiteTensor* input1,
             const TfLiteTensor* input2, TfLiteTensor* output) {
#define TF_LITE_DIV(type, opname, data_type)                             \
  tflite::ArithmeticParams op_params;                                    \
  data_type output_activation_min, output_activation_max;                \
  CalculateActivationRange(params->activation, &output_activation_min,   \
                           &output_activation_max);                      \
  SetActivationParams(output_activation_min, output_activation_max,      \
                      &op_params);                                       \
  type::opname(op_params, GetTensorShape(input1),                        \
               GetTensorData<data_type>(input1), GetTensorShape(input2), \
               GetTensorData<data_type>(input2), GetTensorShape(output), \
               GetTensorData<data_type>(output))
  if (output->type == kTfLiteInt32) {
    if (kernel_type == kReference) {
      if (data->requires_broadcast) {
        TF_LITE_DIV(reference_ops, BroadcastDiv4DSlow, int32_t);
      } else {
        TF_LITE_DIV(reference_ops, Div, int32_t);
      }
    } else {
      if (data->requires_broadcast) {
        TF_LITE_DIV(optimized_ops, BroadcastDiv4DSlow, int32_t);
      } else {
        TF_LITE_DIV(optimized_ops, Div, int32_t);
      }
    }
  } else if (output->type == kTfLiteFloat32) {
    if (kernel_type == kReference) {
      if (data->requires_broadcast) {
        TF_LITE_DIV(reference_ops, BroadcastDiv4DSlow, float);
      } else {
        TF_LITE_DIV(reference_ops, Div, float);
      }
    } else {
      if (data->requires_broadcast) {
        TF_LITE_DIV(optimized_ops, BroadcastDiv4DSlow, float);
      } else {
        TF_LITE_DIV(optimized_ops, Div, float);
      }
    }
  }
#undef TF_LITE_DIV
}

template <KernelType kernel_type>
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
  auto* params = reinterpret_cast<TfLiteDivParams*>(node->builtin_data);
  OpData* data = reinterpret_cast<OpData*>(node->user_data);

  const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
  const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
  TfLiteTensor* output = GetOutput(context, node, kOutputTensor);

  if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32) {
    EvalDiv<kernel_type>(context, node, params, data, input1, input2, output);
  } else {
    context->ReportError(
        context,
        "Div only supports FLOAT32, INT32 and quantized UINT8 now, got %d.",
        output->type);
    return kTfLiteError;
  }

  return kTfLiteOk;
}

}  // namespace div

TfLiteRegistration* Register_DIV_REF() {
  static TfLiteRegistration r = {div::Init, div::Free, div::Prepare,
                                 div::Eval<div::kReference>};
  return &r;
}

TfLiteRegistration* Register_DIV_GENERIC_OPT() {
  static TfLiteRegistration r = {div::Init, div::Free, div::Prepare,
                                 div::Eval<div::kGenericOptimized>};
  return &r;
}

TfLiteRegistration* Register_DIV_NEON_OPT() {
  static TfLiteRegistration r = {div::Init, div::Free, div::Prepare,
                                 div::Eval<div::kNeonOptimized>};
  return &r;
}

TfLiteRegistration* Register_DIV() {
#ifdef USE_NEON
  return Register_DIV_NEON_OPT();
#else
  return Register_DIV_GENERIC_OPT();
#endif
}

}  // namespace builtin
}  // namespace ops
}  // namespace tflite