aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/kernels/detection_postprocess.cc
blob: e21dc5ced9d606159b8d8decd41e3d46d73f0e62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <string.h>
#include <numeric>
#include <vector>
#include "flatbuffers/flexbuffers.h"  // TF:flatbuffers
#include "tensorflow/contrib/lite/c/builtin_op_data.h"
#include "tensorflow/contrib/lite/c/c_api_internal.h"
#include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h"
#include "tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/contrib/lite/kernels/internal/tensor.h"
#include "tensorflow/contrib/lite/kernels/kernel_util.h"
#include "tensorflow/contrib/lite/kernels/op_macros.h"

namespace tflite {
namespace ops {
namespace custom {
namespace detection_postprocess {

// Input tensors
constexpr int kInputTensorBoxEncodings = 0;
constexpr int kInputTensorClassPredictions = 1;
constexpr int kInputTensorAnchors = 2;

// Output tensors
constexpr int kOutputTensorDetectionBoxes = 0;
constexpr int kOutputTensorDetectionClasses = 1;
constexpr int kOutputTensorDetectionScores = 2;
constexpr int kOutputTensorNumDetections = 3;

constexpr int kNumCoordBox = 4;
constexpr int kBatchSize = 1;

// Object Detection model produces axis-aligned boxes in two formats:
// BoxCorner represents the upper right (xmin, ymin) and
// lower left corner (xmax, ymax).
// CenterSize represents the center (xcenter, ycenter), height and width.
// BoxCornerEncoding and CenterSizeEncoding are related as follows:
// ycenter = y / y_scale * anchor.h + anchor.y;
// xcenter = x / x_scale * anchor.w + anchor.x;
// half_h = 0.5*exp(h/ h_scale)) * anchor.h;
// half_w = 0.5*exp(w / w_scale)) * anchor.w;
// ymin = ycenter - half_h
// ymax = ycenter + half_h
// xmin = xcenter - half_w
// xmax = xcenter + half_w
struct BoxCornerEncoding {
  float ymin;
  float xmin;
  float ymax;
  float xmax;
};

struct CenterSizeEncoding {
  float y;
  float x;
  float h;
  float w;
};
// We make sure that the memory allocations are contiguous with static assert.
static_assert(sizeof(BoxCornerEncoding) == sizeof(float) * kNumCoordBox,
              "Size of BoxCornerEncoding is 4 float values");
static_assert(sizeof(CenterSizeEncoding) == sizeof(float) * kNumCoordBox,
              "Size of CenterSizeEncoding is 4 float values");

struct OpData {
  int max_detections;
  int max_classes_per_detection;
  float non_max_suppression_score_threshold;
  float intersection_over_union_threshold;
  int num_classes;
  CenterSizeEncoding scale_values;
  // Indices of Temporary tensors
  int decoded_boxes_index;
  int scores_index;
  int active_candidate_index;
};

void* Init(TfLiteContext* context, const char* buffer, size_t length) {
  auto* op_data = new OpData;
  const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
  const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap();
  op_data->max_detections = m["max_detections"].AsInt32();
  op_data->max_classes_per_detection = m["max_classes_per_detection"].AsInt32();
  op_data->non_max_suppression_score_threshold =
      m["nms_score_threshold"].AsFloat();
  op_data->intersection_over_union_threshold = m["nms_iou_threshold"].AsFloat();
  op_data->num_classes = m["num_classes"].AsInt32();
  op_data->scale_values.y = m["y_scale"].AsFloat();
  op_data->scale_values.x = m["x_scale"].AsFloat();
  op_data->scale_values.h = m["h_scale"].AsFloat();
  op_data->scale_values.w = m["w_scale"].AsFloat();
  context->AddTensors(context, 1, &op_data->decoded_boxes_index);
  context->AddTensors(context, 1, &op_data->scores_index);
  context->AddTensors(context, 1, &op_data->active_candidate_index);
  return op_data;
}

void Free(TfLiteContext* context, void* buffer) {
  delete reinterpret_cast<OpData*>(buffer);
}

// TODO(chowdhery): Add to kernel_util.h
TfLiteStatus SetTensorSizes(TfLiteContext* context, TfLiteTensor* tensor,
                            std::initializer_list<int> values) {
  TfLiteIntArray* size = TfLiteIntArrayCreate(values.size());
  int index = 0;
  for (int v : values) {
    size->data[index] = v;
    ++index;
  }
  return context->ResizeTensor(context, tensor, size);
}

TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
  auto* op_data = reinterpret_cast<OpData*>(node->user_data);
  // Inputs: box_encodings, scores, anchors
  TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
  const TfLiteTensor* input_box_encodings =
      GetInput(context, node, kInputTensorBoxEncodings);
  const TfLiteTensor* input_class_predictions =
      GetInput(context, node, kInputTensorClassPredictions);
  const TfLiteTensor* input_anchors =
      GetInput(context, node, kInputTensorAnchors);
  TF_LITE_ENSURE_EQ(context, NumDimensions(input_box_encodings), 3);
  TF_LITE_ENSURE_EQ(context, NumDimensions(input_class_predictions), 3);
  TF_LITE_ENSURE_EQ(context, NumDimensions(input_anchors), 2);
  // number of detected boxes
  const int num_detected_boxes =
      op_data->max_detections * op_data->max_classes_per_detection;

  // Outputs: detection_boxes, detection_scores, detection_classes,
  // num_detections
  TF_LITE_ENSURE_EQ(context, NumOutputs(node), 4);
  // Output Tensor detection_boxes: size is set to (1, num_detected_boxes, 4)
  TfLiteTensor* detection_boxes =
      GetOutput(context, node, kOutputTensorDetectionBoxes);
  detection_boxes->type = kTfLiteFloat32;
  SetTensorSizes(context, detection_boxes,
                 {kBatchSize, num_detected_boxes, kNumCoordBox});

  // Output Tensor detection_classes: size is set to (1, num_detected_boxes)
  TfLiteTensor* detection_classes =
      GetOutput(context, node, kOutputTensorDetectionClasses);
  detection_classes->type = kTfLiteFloat32;
  SetTensorSizes(context, detection_classes, {kBatchSize, num_detected_boxes});

  // Output Tensor detection_scores: size is set to (1, num_detected_boxes)
  TfLiteTensor* detection_scores =
      GetOutput(context, node, kOutputTensorDetectionScores);
  detection_scores->type = kTfLiteFloat32;
  SetTensorSizes(context, detection_scores, {kBatchSize, num_detected_boxes});

  // Output Tensor num_detections: size is set to 1
  TfLiteTensor* num_detections =
      GetOutput(context, node, kOutputTensorNumDetections);
  num_detections->type = kTfLiteFloat32;
  // TODO (chowdhery): Make it a scalar when available
  SetTensorSizes(context, num_detections, {1});

  // Temporary tensors
  TfLiteIntArrayFree(node->temporaries);
  node->temporaries = TfLiteIntArrayCreate(3);
  node->temporaries->data[0] = op_data->decoded_boxes_index;
  node->temporaries->data[1] = op_data->scores_index;
  node->temporaries->data[2] = op_data->active_candidate_index;

  // decoded_boxes
  TfLiteTensor* decoded_boxes = &context->tensors[op_data->decoded_boxes_index];
  decoded_boxes->type = kTfLiteFloat32;
  decoded_boxes->allocation_type = kTfLiteArenaRw;
  SetTensorSizes(context, decoded_boxes,
                 {input_box_encodings->dims->data[1], kNumCoordBox});

  // scores
  TfLiteTensor* scores = &context->tensors[op_data->scores_index];
  scores->type = kTfLiteFloat32;
  scores->allocation_type = kTfLiteArenaRw;
  SetTensorSizes(context, scores,
                 {input_class_predictions->dims->data[1],
                  input_class_predictions->dims->data[2]});

  // active_candidate
  TfLiteTensor* active_candidate =
      &context->tensors[op_data->active_candidate_index];
  active_candidate->type = kTfLiteUInt8;
  active_candidate->allocation_type = kTfLiteArenaRw;
  SetTensorSizes(context, active_candidate,
                 {input_box_encodings->dims->data[1]});

  return kTfLiteOk;
}

class Dequantizer {
 public:
  Dequantizer(int zero_point, float scale)
      : zero_point_(zero_point), scale_(scale) {}
  float operator()(uint8 x) {
    return (static_cast<float>(x) - zero_point_) * scale_;
  }

 private:
  int zero_point_;
  float scale_;
};

void DequantizeBoxEncodings(const TfLiteTensor* input_box_encodings, int idx,
                            float quant_zero_point, float quant_scale,
                            CenterSizeEncoding* box_centersize) {
  const uint8* boxes =
      GetTensorData<uint8>(input_box_encodings) + kNumCoordBox * idx;
  Dequantizer dequantize(quant_zero_point, quant_scale);
  box_centersize->y = dequantize(boxes[0]);
  box_centersize->x = dequantize(boxes[1]);
  box_centersize->h = dequantize(boxes[2]);
  box_centersize->w = dequantize(boxes[3]);
}

template <class T>
T ReInterpretTensor(const TfLiteTensor* tensor) {
  // TODO (chowdhery): check float
  const float* tensor_base = tensor->data.f;
  return reinterpret_cast<T>(tensor_base);
}

template <class T>
T ReInterpretTensor(TfLiteTensor* tensor) {
  // TODO (chowdhery): check float
  float* tensor_base = tensor->data.f;
  return reinterpret_cast<T>(tensor_base);
}

TfLiteStatus DecodeCenterSizeBoxes(TfLiteContext* context, TfLiteNode* node,
                                   OpData* op_data) {
  // Parse input tensor boxencodings
  const TfLiteTensor* input_box_encodings =
      GetInput(context, node, kInputTensorBoxEncodings);
  TF_LITE_ENSURE_EQ(context, input_box_encodings->dims->data[0], kBatchSize);
  const int num_boxes = input_box_encodings->dims->data[1];
  TF_LITE_ENSURE_EQ(context, input_box_encodings->dims->data[2], kNumCoordBox);
  const TfLiteTensor* input_anchors =
      GetInput(context, node, kInputTensorAnchors);

  // Decode the boxes to get (ymin, xmin, ymax, xmax) based on the anchors
  CenterSizeEncoding box_centersize;
  CenterSizeEncoding scale_values = op_data->scale_values;
  CenterSizeEncoding anchor;
  for (int idx = 0; idx < num_boxes; ++idx) {
    switch (input_box_encodings->type) {
        // Quantized
      case kTfLiteUInt8:
        DequantizeBoxEncodings(
            input_box_encodings, idx,
            static_cast<float>(input_box_encodings->params.zero_point),
            static_cast<float>(input_box_encodings->params.scale),
            &box_centersize);
        DequantizeBoxEncodings(
            input_anchors, idx,
            static_cast<float>(input_anchors->params.zero_point),
            static_cast<float>(input_anchors->params.scale), &anchor);
        break;
        // Float
      case kTfLiteFloat32:
        box_centersize = ReInterpretTensor<const CenterSizeEncoding*>(
            input_box_encodings)[idx];
        anchor =
            ReInterpretTensor<const CenterSizeEncoding*>(input_anchors)[idx];
        break;
      default:
        // Unsupported type.
        return kTfLiteError;
    }

    float ycenter = box_centersize.y / scale_values.y * anchor.h + anchor.y;
    float xcenter = box_centersize.x / scale_values.x * anchor.w + anchor.x;
    float half_h =
        0.5f * static_cast<float>(std::exp(box_centersize.h / scale_values.h)) *
        anchor.h;
    float half_w =
        0.5f * static_cast<float>(std::exp(box_centersize.w / scale_values.w)) *
        anchor.w;
    TfLiteTensor* decoded_boxes =
        &context->tensors[op_data->decoded_boxes_index];
    auto& box = ReInterpretTensor<BoxCornerEncoding*>(decoded_boxes)[idx];
    box.ymin = ycenter - half_h;
    box.xmin = xcenter - half_w;
    box.ymax = ycenter + half_h;
    box.xmax = xcenter + half_w;
  }
  return kTfLiteOk;
}

void DecreasingPartialArgSort(const float* values, int num_values,
                              int num_to_sort, int* indices) {
  std::iota(indices, indices + num_values, 0);
  std::partial_sort(
      indices, indices + num_to_sort, indices + num_values,
      [&values](const int i, const int j) { return values[i] > values[j]; });
}

void SelectDetectionsAboveScoreThreshold(const std::vector<float>& values,
                                         const float threshold,
                                         std::vector<float>* keep_values,
                                         std::vector<int>* keep_indices) {
  for (int i = 0; i < values.size(); i++) {
    if (values[i] >= threshold) {
      keep_values->emplace_back(values[i]);
      keep_indices->emplace_back(i);
    }
  }
}

bool ValidateBoxes(const TfLiteTensor* decoded_boxes, const int num_boxes) {
  for (int i = 0; i < num_boxes; ++i) {
    // ymax>=ymin, xmax>=xmin
    auto& box = ReInterpretTensor<const BoxCornerEncoding*>(decoded_boxes)[i];
    if (box.ymin >= box.ymax || box.xmin >= box.xmax) {
      return false;
    }
  }
  return true;
}

float ComputeIntersectionOverUnion(const TfLiteTensor* decoded_boxes,
                                   const int i, const int j) {
  auto& box_i = ReInterpretTensor<const BoxCornerEncoding*>(decoded_boxes)[i];
  auto& box_j = ReInterpretTensor<const BoxCornerEncoding*>(decoded_boxes)[j];
  const float area_i = (box_i.ymax - box_i.ymin) * (box_i.xmax - box_i.xmin);
  const float area_j = (box_j.ymax - box_j.ymin) * (box_j.xmax - box_j.xmin);
  if (area_i <= 0 || area_j <= 0) return 0.0;
  const float intersection_ymin = std::max<float>(box_i.ymin, box_j.ymin);
  const float intersection_xmin = std::max<float>(box_i.xmin, box_j.xmin);
  const float intersection_ymax = std::min<float>(box_i.ymax, box_j.ymax);
  const float intersection_xmax = std::min<float>(box_i.xmax, box_j.xmax);
  const float intersection_area =
      std::max<float>(intersection_ymax - intersection_ymin, 0.0) *
      std::max<float>(intersection_xmax - intersection_xmin, 0.0);
  return intersection_area / (area_i + area_j - intersection_area);
}

// NonMaxSuppressionSingleClass() is O(n^2) pairwise comparison between boxes
// It assumes all boxes are good in beginning and sorts based on the scores.
// If lower-scoring box has too much overlap with a higher-scoring box,
// we get rid of the lower-scoring box.
TfLiteStatus NonMaxSuppressionSingleClassHelper(
    TfLiteContext* context, TfLiteNode* node, OpData* op_data,
    const std::vector<float>& scores, std::vector<int>* selected) {
  const TfLiteTensor* input_box_encodings =
      GetInput(context, node, kInputTensorBoxEncodings);
  const TfLiteTensor* decoded_boxes =
      &context->tensors[op_data->decoded_boxes_index];
  const int num_boxes = input_box_encodings->dims->data[1];
  const int max_detections = op_data->max_detections;
  const float non_max_suppression_score_threshold =
      op_data->non_max_suppression_score_threshold;
  const float intersection_over_union_threshold =
      op_data->intersection_over_union_threshold;
  // Maximum detections should be positive.
  TF_LITE_ENSURE(context, (max_detections >= 0));
  // intersection_over_union_threshold should be positive
  // and should be less than 1.
  TF_LITE_ENSURE(context, (intersection_over_union_threshold > 0.0f) &&
                              (intersection_over_union_threshold <= 1.0f));
  // Validate boxes
  TF_LITE_ENSURE(context, ValidateBoxes(decoded_boxes, num_boxes));

  // threshold scores
  std::vector<int> keep_indices;
  // TODO (chowdhery): Remove the dynamic allocation and replace it
  // with temporaries, esp for std::vector<float>
  std::vector<float> keep_scores;
  SelectDetectionsAboveScoreThreshold(
      scores, non_max_suppression_score_threshold, &keep_scores, &keep_indices);

  int num_scores_kept = keep_scores.size();
  std::vector<int> sorted_indices;
  sorted_indices.resize(num_scores_kept);
  DecreasingPartialArgSort(keep_scores.data(), num_scores_kept, num_scores_kept,
                           sorted_indices.data());

  const int num_boxes_kept = num_scores_kept;
  const int output_size = std::min(num_boxes_kept, max_detections);
  selected->clear();
  TfLiteTensor* active_candidate =
      &context->tensors[op_data->active_candidate_index];
  TF_LITE_ENSURE(context, (active_candidate->dims->data[0]) == num_boxes);
  int num_active_candidate = num_boxes_kept;
  uint8_t* active_box_candidate = (active_candidate->data.uint8);
  for (int row = 0; row < num_boxes_kept; row++) {
    active_box_candidate[row] = 1;
  }

  for (int i = 0; i < num_boxes_kept; ++i) {
    if (num_active_candidate == 0 || selected->size() >= output_size) break;
    if (active_box_candidate[i] == 1) {
      selected->push_back(keep_indices[sorted_indices[i]]);
      active_box_candidate[i] = 0;
      num_active_candidate--;
    } else {
      continue;
    }
    for (int j = i + 1; j < num_boxes_kept; ++j) {
      if (active_box_candidate[j] == 1) {
        float intersection_over_union = ComputeIntersectionOverUnion(
            decoded_boxes, keep_indices[sorted_indices[i]],
            keep_indices[sorted_indices[j]]);

        if (intersection_over_union > intersection_over_union_threshold) {
          active_box_candidate[j] = 0;
          num_active_candidate--;
        }
      }
    }
  }
  return kTfLiteOk;
}

// This function implements a fast version of Non Maximal Suppression for
// multiple classes where
// 1) we keep the top-k scores for each anchor and
// 2) during NMS, each anchor only uses the highest class score for sorting.
// 3) Compared to standard NMS, the worst runtime of this version is O(N^2)
// instead of O(KN^2) where N is the number of anchors and K the number of
// classes.
TfLiteStatus NonMaxSuppressionMultiClassFastHelper(TfLiteContext* context,
                                                   TfLiteNode* node,
                                                   OpData* op_data,
                                                   const float* scores) {
  const TfLiteTensor* input_box_encodings =
      GetInput(context, node, kInputTensorBoxEncodings);
  const TfLiteTensor* decoded_boxes =
      &context->tensors[op_data->decoded_boxes_index];

  TfLiteTensor* detection_boxes =
      GetOutput(context, node, kOutputTensorDetectionBoxes);
  TfLiteTensor* detection_classes =
      GetOutput(context, node, kOutputTensorDetectionClasses);
  TfLiteTensor* detection_scores =
      GetOutput(context, node, kOutputTensorDetectionScores);
  TfLiteTensor* num_detections =
      GetOutput(context, node, kOutputTensorNumDetections);

  const int num_boxes = input_box_encodings->dims->data[1];
  const int num_classes = op_data->num_classes;
  const int max_categories_per_anchor = op_data->max_classes_per_detection;
  // The row index offset is 1 if background class is included and 0 otherwise.
  const int label_offset = 1;
  TF_LITE_ENSURE(context, (label_offset != -1));
  TF_LITE_ENSURE(context, (max_categories_per_anchor > 0));
  const int num_classes_with_background = num_classes + label_offset;
  const int num_categories_per_anchor =
      std::min(max_categories_per_anchor, num_classes);
  std::vector<float> max_scores;
  max_scores.resize(num_boxes);
  std::vector<int> sorted_class_indices;
  sorted_class_indices.resize(num_boxes * num_classes);
  for (int row = 0; row < num_boxes; row++) {
    const float* box_scores =
        scores + row * num_classes_with_background + label_offset;
    int* class_indices = sorted_class_indices.data() + row * num_classes;
    DecreasingPartialArgSort(box_scores, num_classes, num_categories_per_anchor,
                             class_indices);
    max_scores[row] = box_scores[class_indices[0]];
  }
  // Perform non-maximal suppression on max scores
  std::vector<int> selected;
  NonMaxSuppressionSingleClassHelper(context, node, op_data, max_scores,
                                     &selected);
  // Allocate output tensors
  int output_box_index = 0;
  for (const auto& selected_index : selected) {
    const float* box_scores =
        scores + selected_index * num_classes_with_background + label_offset;
    const int* class_indices =
        sorted_class_indices.data() + selected_index * num_classes;

    for (int col = 0; col < num_categories_per_anchor; ++col) {
      int box_offset = num_categories_per_anchor * output_box_index + col;
      // detection_boxes
      ReInterpretTensor<BoxCornerEncoding*>(detection_boxes)[box_offset] =
          ReInterpretTensor<const BoxCornerEncoding*>(
              decoded_boxes)[selected_index];
      // detection_classes
      detection_classes->data.f[box_offset] = class_indices[col];
      // detection_scores
      detection_scores->data.f[box_offset] = box_scores[class_indices[col]];
      output_box_index++;
    }
  }
  num_detections->data.f[0] = output_box_index;
  return kTfLiteOk;
}

void DequantizeClassPredictions(const TfLiteTensor* input_class_predictions,
                                const int num_boxes,
                                const int num_classes_with_background,
                                const TfLiteTensor* scores) {
  float quant_zero_point =
      static_cast<float>(input_class_predictions->params.zero_point);
  float quant_scale = static_cast<float>(input_class_predictions->params.scale);
  Dequantizer dequantize(quant_zero_point, quant_scale);
  const uint8* scores_quant = GetTensorData<uint8>(input_class_predictions);
  for (int idx = 0; idx < num_boxes * num_classes_with_background; ++idx) {
    scores->data.f[idx] = dequantize(scores_quant[idx]);
  }
}

TfLiteStatus NonMaxSuppressionMultiClass(TfLiteContext* context,
                                         TfLiteNode* node, OpData* op_data) {
  // Get the input tensors
  const TfLiteTensor* input_box_encodings =
      GetInput(context, node, kInputTensorBoxEncodings);
  const TfLiteTensor* input_class_predictions =
      GetInput(context, node, kInputTensorClassPredictions);
  const int num_boxes = input_box_encodings->dims->data[1];
  const int num_classes = op_data->num_classes;
  TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[0],
                    kBatchSize);
  TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[1], num_boxes);
  const int num_classes_with_background =
      input_class_predictions->dims->data[2];

  TF_LITE_ENSURE(context, (num_classes_with_background == num_classes + 1));

  const TfLiteTensor* scores;
  switch (input_class_predictions->type) {
    case kTfLiteUInt8: {
      TfLiteTensor* temporary_scores = &context->tensors[op_data->scores_index];
      DequantizeClassPredictions(input_class_predictions, num_boxes,
                                 num_classes_with_background, temporary_scores);
      scores = temporary_scores;
    } break;
    case kTfLiteFloat32:
      scores = input_class_predictions;
      break;
    default:
      // Unsupported type.
      return kTfLiteError;
  }
  NonMaxSuppressionMultiClassFastHelper(context, node, op_data,
                                        GetTensorData<float>(scores));
  return kTfLiteOk;
}

TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
  // TODO(chowdhery): Generalize for any batch size
  TF_LITE_ENSURE(context, (kBatchSize == 1));
  auto* op_data = reinterpret_cast<OpData*>(node->user_data);
  // These two functions correspond to two blocks in the Object Detection model.
  // In future, we would like to break the custom op in two blocks, which is
  // currently not feasible because we would like to input quantized inputs
  // and do all calculations in float. Mixed quantized/float calculations are
  // currently not supported in TFLite.

  // This fills in temporary decoded_boxes
  // by transforming input_box_encodings and input_anchors from
  // CenterSizeEncodings to BoxCornerEncoding
  DecodeCenterSizeBoxes(context, node, op_data);
  // This fills in the output tensors
  // by choosing effective set of decoded boxes
  // based on Non Maximal Suppression, i.e. selecting
  // highest scoring non-overlapping boxes.
  NonMaxSuppressionMultiClass(context, node, op_data);

  return kTfLiteOk;
}
}  // namespace detection_postprocess

TfLiteRegistration* Register_DETECTION_POSTPROCESS() {
  static TfLiteRegistration r = {detection_postprocess::Init,
                                 detection_postprocess::Free,
                                 detection_postprocess::Prepare,
                                 detection_postprocess::Eval};
  return &r;
}

}  // namespace custom
}  // namespace ops
}  // namespace tflite