aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/kernels/arg_min_max.cc
blob: b91e348c27f4a5a0d6af3462612db8cbfb97af05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/lite/c/builtin_op_data.h"
#include "tensorflow/contrib/lite/c/c_api_internal.h"
#include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h"
#include "tensorflow/contrib/lite/kernels/internal/quantization_util.h"
#include "tensorflow/contrib/lite/kernels/internal/tensor.h"
#include "tensorflow/contrib/lite/kernels/kernel_util.h"
#include "tensorflow/contrib/lite/kernels/op_macros.h"

namespace tflite {
namespace ops {
namespace builtin {
namespace arg_min_max {

constexpr int kInputTensor = 0;
constexpr int kAxis = 1;
constexpr int kOutputTensor = 0;

TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
  TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
  TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);

  const TfLiteTensor* input = GetInput(context, node, kInputTensor);
  const TfLiteTensor* axis = GetInput(context, node, kAxis);
  // Make sure the axis is only 1 dimension.
  TF_LITE_ENSURE_EQ(context, NumElements(axis), 1);

  // Make sure the axis is only either int32 or int64.
  TF_LITE_ENSURE(context,
                 axis->type == kTfLiteInt32 || axis->type == kTfLiteInt64);
  TfLiteTensor* output = GetOutput(context, node, kOutputTensor);

  auto* params = reinterpret_cast<TfLiteArgMaxParams*>(node->builtin_data);
  switch (params->output_type) {
    case kTfLiteInt32:
      output->type = kTfLiteInt32;
      break;
    case kTfLiteInt64:
      output->type = kTfLiteInt64;
      break;
    default:
      context->ReportError(context, "Unknown index output data type: %d",
                           params->output_type);
      return kTfLiteError;
  }

  // Check conditions for different types.
  switch (input->type) {
    case kTfLiteFloat32:
    case kTfLiteUInt8:
    case kTfLiteInt32:
      break;

    default:
      context->ReportError(
          context,
          "Unkonwn input type: %d, only float32 and int types are supported",
          input->type);
      return kTfLiteError;
  }

  // Copy the input dimensions to output except make the last dimension 1.
  TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
  TfLiteIntArray* output_size = TfLiteIntArrayCopy(input->dims);
  output_size->data[NumDimensions(input) - 1] = 1;

  return context->ResizeTensor(context, output, output_size);
}

template <typename T>
std::function<bool(T, T)> GetComparefunction(bool is_arg_max) {
  if (is_arg_max) {
    return std::greater<T>();
  } else {
    return std::less<T>();
  }
}

// The current impl actually ignores the axis argument.
// Only determine the index of the maximum value in the last dimension.
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node, bool is_arg_max) {
  const TfLiteTensor* input = GetInput(context, node, kInputTensor);
  const TfLiteTensor* axis = GetInput(context, node, kAxis);
  TfLiteTensor* output = GetOutput(context, node, kOutputTensor);

#define TF_LITE_ARG_MIN_MAX(data_type, axis_type, output_type) \
  optimized_ops::ArgMinMax(                                    \
      GetTensorShape(input), GetTensorData<data_type>(input),  \
      GetTensorData<axis_type>(axis), GetTensorShape(output),  \
      GetTensorData<output_type>(output),                      \
      GetComparefunction<data_type>(is_arg_max))
  if (axis->type == kTfLiteInt32) {
    switch (output->type) {
      case kTfLiteInt32: {
        switch (input->type) {
          case kTfLiteFloat32:
            TF_LITE_ARG_MIN_MAX(float, int32_t, int32_t);
            break;
          case kTfLiteUInt8:
            TF_LITE_ARG_MIN_MAX(uint8_t, int32_t, int32_t);
            break;
          case kTfLiteInt32:
            TF_LITE_ARG_MIN_MAX(int32_t, int32_t, int32_t);
            break;
          default:
            return kTfLiteError;
        }
      } break;
      case kTfLiteInt64: {
        switch (input->type) {
          case kTfLiteFloat32:
            TF_LITE_ARG_MIN_MAX(float, int32_t, int64_t);
            break;
          case kTfLiteUInt8:
            TF_LITE_ARG_MIN_MAX(uint8_t, int32_t, int64_t);
            break;
          case kTfLiteInt32:
            TF_LITE_ARG_MIN_MAX(int32_t, int32_t, int64_t);
            break;
          default:
            return kTfLiteError;
        }
      } break;
      default:
        return kTfLiteError;
    }
  } else {
    switch (output->type) {
      case kTfLiteInt32: {
        switch (input->type) {
          case kTfLiteFloat32:
            TF_LITE_ARG_MIN_MAX(float, int64_t, int32_t);
            break;
          case kTfLiteUInt8:
            TF_LITE_ARG_MIN_MAX(uint8_t, int64_t, int32_t);
            break;
          case kTfLiteInt32:
            TF_LITE_ARG_MIN_MAX(int32_t, int64_t, int32_t);
            break;
          default:
            return kTfLiteError;
        }
      } break;
      case kTfLiteInt64: {
        switch (input->type) {
          case kTfLiteFloat32:
            TF_LITE_ARG_MIN_MAX(float, int64_t, int64_t);
            break;
          case kTfLiteUInt8:
            TF_LITE_ARG_MIN_MAX(uint8_t, int64_t, int64_t);
            break;
          case kTfLiteInt32:
            TF_LITE_ARG_MIN_MAX(int32_t, int64_t, int64_t);
            break;
          default:
            return kTfLiteError;
        }
      } break;
      default:
        return kTfLiteError;
    }
  }
#undef TF_LITE_ARG_MIN_MAX

  return kTfLiteOk;
}

TfLiteStatus ArgMinEval(TfLiteContext* context, TfLiteNode* node) {
  return Eval(context, node, false);
}

TfLiteStatus ArgMaxEval(TfLiteContext* context, TfLiteNode* node) {
  return Eval(context, node, true);
}

}  // namespace arg_min_max

TfLiteRegistration* Register_ARG_MAX() {
  static TfLiteRegistration r = {nullptr, nullptr, arg_min_max::Prepare,
                                 arg_min_max::ArgMaxEval};
  return &r;
}

TfLiteRegistration* Register_ARG_MIN() {
  static TfLiteRegistration r = {nullptr, nullptr, arg_min_max::Prepare,
                                 arg_min_max::ArgMinEval};
  return &r;
}

}  // namespace builtin
}  // namespace ops
}  // namespace tflite