aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/interpreter.h
blob: 38dd402e8a971fd0aab51e98610ad12131441862 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Main abstraction controlling the tflite interpreter.
// See context.h for the API for defining operations (TfLiteRegistration).
#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_LITE_INTERPRETER_H_
#define THIRD_PARTY_TENSORFLOW_CONTRIB_LITE_INTERPRETER_H_

#include <cstdio>
#include <cstdlib>
#include <vector>
#include "tensorflow/contrib/lite/allocation.h"
#include "tensorflow/contrib/lite/context.h"
#include "tensorflow/contrib/lite/error_reporter.h"
#include "tensorflow/contrib/lite/memory_planner.h"

namespace tflite {

// Map statically from a c++ type to a TfLiteType (used below for safe casts).
template <class T>
constexpr TfLiteType typeToTfLiteType() {
  return kTfLiteNoType;
}
template <>
constexpr TfLiteType typeToTfLiteType<int>() {
  return kTfLiteInt32;
}
template <>
constexpr TfLiteType typeToTfLiteType<int64_t>() {
  return kTfLiteInt64;
}
template <>
constexpr TfLiteType typeToTfLiteType<float>() {
  return kTfLiteFloat32;
}
template <>
constexpr TfLiteType typeToTfLiteType<unsigned char>() {
  return kTfLiteUInt8;
}

// Forward declare since NNAPIDelegate uses Interpreter.
class NNAPIDelegate;

// An interpreter for a graph of nodes that input and output from tensors.
// Each node of the graph processes a set of input tensors and produces a
// set of output Tensors. All inputs/output tensors are referenced by index.
//
// Usage:
//
// -- Create basic model
// Interpreter foo(2, 1);
// foo.SetTensorParametersReadWrite(0, ...);
// foo.SetTensorParametersReadOnly(1, ...);
// foo.SetNodeParameters(0, ...)
//
// -- Resize input array to 1 length.
// foo.ResizeInputTensor(0, 1);
// foo.AllocateTensors();
// -- Install array data
// foo.typed_tensor<float>(0)[0] = 3;
// foo.Invoke();
// foo.typed_tensor<float>(0)[0] = 4;
// foo.Invoke();
// -- Resize input array and set data.
// foo.ResizeInputTensor(0, 2);
// foo.AllocateTensors();
// foo.typed_tensor<float>(0)[0] = 4;
// foo.typed_tensor<float>(0)[1] = 8;
// foo.Invoke();
//

class Interpreter {
 public:
  // Instantiate an interpreter. All errors associated with reading and
  // processing this model will be forwarded to the error_reporter object.
  //
  // Note, if error_reporter is nullptr, then a default StderrReporter is
  // used.
  explicit Interpreter(ErrorReporter* error_reporter = DefaultErrorReporter());

  ~Interpreter();

  Interpreter(const Interpreter&) = delete;
  Interpreter& operator=(const Interpreter&) = delete;

  // Functions to build interpreter

  // Provide a list of tensor indexes that are inputs to the model.
  // Each index is bound check and this modifies the consistent_ flag of the
  // interpreter.
  TfLiteStatus SetInputs(std::vector<int> inputs);

  // Provide a list of tensor indexes that are outputs to the model
  // Each index is bound check and this modifies the consistent_ flag of the
  // interpreter.
  TfLiteStatus SetOutputs(std::vector<int> outputs);

  // Adds a node with the given parameters and returns the index of the new
  // node in `node_index` (optionally). Interpreter will take ownership of
  // `builtin_data` and destroy it with `delete`. Ownership of 'init_data'
  // remains with the caller.
  TfLiteStatus AddNodeWithParameters(const std::vector<int>& inputs,
                                     const std::vector<int>& outputs,
                                     const char* init_data,
                                     size_t init_data_size, void* builtin_data,
                                     const TfLiteRegistration* registration,
                                     int* node_index = nullptr);

  // Adds `tensors_to_add` tensors, preserving pre-existing Tensor entries.
  // The value pointed to by `first_new_tensor_index` will be set to the
  // index of the first new tensor if `first_new_tensor_index` is non-null.
  TfLiteStatus AddTensors(int tensors_to_add,
                          int* first_new_tensor_index = nullptr);

  // Set description of inputs/outputs/data/fptrs for node `node_index`.
  // This variant assumes an external buffer has been allocated of size
  // bytes. The lifetime of buffer must be ensured to be greater or equal
  // to Interpreter.
  TfLiteStatus SetTensorParametersReadOnly(
      int tensor_index, TfLiteType type, const char* name,
      const std::vector<int>& dims, TfLiteQuantizationParams quantization,
      const char* buffer, size_t bytes, const Allocation* allocation = nullptr);

  // Set description of inputs/outputs/data/fptrs for node `node_index`.
  // This variant assumes an external buffer has been allocated of size
  // bytes. The lifetime of buffer must be ensured to be greater or equal
  // to Interpreter.
  TfLiteStatus SetTensorParametersReadWrite(
      int tensor_index, TfLiteType type, const char* name,
      const std::vector<int>& dims, TfLiteQuantizationParams quantization);

  // Functions to access tensor data

  // Read only access to list of inputs.
  const std::vector<int>& inputs() const { return inputs_; }

  // Return the name of a given input. The given index must be between 0 and
  // inputs().size().
  const char* GetInputName(int index) const {
    return context_.tensors[inputs_[index]].name;
  }

  // Read only access to list of outputs.
  const std::vector<int>& outputs() const { return outputs_; }

  // Return the name of a given output. The given index must be between 0 and
  // outputs().size().
  const char* GetOutputName(int index) const {
    return context_.tensors[outputs_[index]].name;
  }

  // Return the number of tensors in the model.
  int tensors_size() const { return context_.tensors_size; }

  // Return the number of ops in the model.
  int nodes_size() const { return nodes_and_registration_.size(); }

  // Get a tensor data structure.
  // TODO(aselle): Create a safe ArrayHandle interface to avoid exposing this
  // read/write access to structure
  TfLiteTensor* tensor(int tensor_index) {
    if (tensor_index >= context_.tensors_size || tensor_index < 0)
        return nullptr;
    return &context_.tensors[tensor_index];
  }

  // Get a pointer to an operation and registration data structure if in bounds.
  // TODO(aselle): Create a safe ArrayHandle interface to avoid exposing this
  // read/write access to structure
  const std::pair<TfLiteNode, TfLiteRegistration>* node_and_registration(
      int node_index) {
    if (node_index >= nodes_and_registration_.size() || node_index < 0)
      return nullptr;
    return &nodes_and_registration_[node_index];
  }

  // Perform a checked cast to the appropriate tensor type.
  template <class T>
  T* typed_tensor(int tensor_index) {
    if (TfLiteTensor* tensor_ptr = tensor(tensor_index)) {
      if (tensor_ptr->type == typeToTfLiteType<T>()) {
        return reinterpret_cast<T*>(tensor_ptr->data.raw);
      }
    }
    return nullptr;
  }

  // Return a pointer into the data of a given input tensor. The given index
  // must be between 0 and inputs().size().
  template <class T>
  T* typed_input_tensor(int index) {
    return typed_tensor<T>(inputs_[index]);
  }

  // Return a pointer into the data of a given output tensor. The given index
  // must be between 0 and outputs().size().
  template <class T>
  T* typed_output_tensor(int index) {
    return typed_tensor<T>(outputs_[index]);
  }

  // Change the dimensionality of a given tensor. Note, this is only acceptable
  // for tensor indices that are inputs.
  // Returns status of failure or success.
  // TODO(aselle): Consider implementing ArraySlice equivalent to make this
  //   more adept at accepting data without an extra copy. Use absl::ArraySlice
  //   if our partners determine that dependency is acceptable.
  TfLiteStatus ResizeInputTensor(int tensor_index,
                                 const std::vector<int>& dims);

  // Update allocations for all tensors. This will redim dependent tensors using
  // the input tensor dimensionality as given. This is relatively expensive.
  // If you know that your sizes are not changing, you need not call this.

  // Returns status of success or failure.
  TfLiteStatus AllocateTensors();

  // Invoke the interpreter (run the whole graph in dependency order).
  //
  // NOTE: It is possible that the interpreter is not in a ready state
  // to evaluate (i.e. if a ResizeTensor() has been performed without an
  // AllocateTensors().
  // Returns status of success or failure.
  TfLiteStatus Invoke();

  // Enable or disable the NN API (true to enable)
  void UseNNAPI(bool enable);

  // Set the number of threads available to the interpreter.
  void SetNumThreads(int num_threads);

 private:
  // Give 'op_reg' a chance to initialize itself using the contents of
  // 'buffer'.
  void* OpInit(const TfLiteRegistration& op_reg, const char* buffer,
               size_t length) {
    if (op_reg.init == nullptr) return nullptr;
    return op_reg.init(&context_, buffer, length);
  }

  // Let 'op_reg' release any memory it might have allocated via 'OpInit'.
  void OpFree(const TfLiteRegistration& op_reg, void* buffer) {
    if (op_reg.free == nullptr) return;
    if (buffer) {
      op_reg.free(&context_, buffer);
    }
  }

  // Prepare the given 'node' for execution.
  TfLiteStatus OpPrepare(const TfLiteRegistration& op_reg, TfLiteNode* node) {
    if (op_reg.prepare == nullptr) return kTfLiteOk;
    return op_reg.prepare(&context_, node);
  }

  // Invoke the operator represented by 'node'.
  TfLiteStatus OpInvoke(const TfLiteRegistration& op_reg, TfLiteNode* node) {
    if (op_reg.invoke == nullptr) return kTfLiteError;
    return op_reg.invoke(&context_, node);
  }

  // Call OpPrepare() for as many ops as possible, allocating memory for their
  // tensors. If an op containing dynamic tensors is found, preparation will be
  // postponed until this function is called again. This allows the interpreter
  // to wait until Invoke() to resolve the sizes of dynamic tensors.
  TfLiteStatus PrepareOpsAndTensors();

  // Call OpPrepare() for all ops starting at 'first_node'. Stop when a
  // dynamic tensors is found or all ops have been prepared. Fill
  // 'last_node_prepared' with the id of the op containing dynamic tensors, or
  // the last in the graph.
  TfLiteStatus PrepareOpsStartingAt(int first_node, int* last_node_prepared);

  // Tensors needed by the interpreter. Use `AddTensors` to add more blank
  // tensor entries. Note, `tensors_.data()` needs to be synchronized to the
  // `context_` whenever this std::vector is reallocated. Currently this
  // only happens in `AddTensors()`.
  std::vector<TfLiteTensor> tensors_;

  // Check if an array of tensor indices are valid with respect to the Tensor
  // array.
  // NOTE: this changes consistent_ to be false if indices are out of bounds.
  TfLiteStatus CheckTensorIndices(const char* label, const int* indices,
                                  int length);

  // Compute the number of bytes required to represent a tensor with dimensions
  // specified by the array dims (of length dims_size). Returns the status code
  // and bytes.
  TfLiteStatus BytesRequired(TfLiteType type, const int* dims, int dims_size,
                             size_t* bytes);

  // Request an tensor be resized implementation.
  TfLiteStatus ResizeTensorImpl(TfLiteTensor* tensor, TfLiteIntArray* new_size);

  // Report a detailed error string (will be printed to stderr).
  // TODO(aselle): allow user of class to provide alternative destinations.
  void ReportErrorImpl(const char* format, va_list args);

  // Entry point for C node plugin API to request an tensor be resized.
  static TfLiteStatus ResizeTensor(TfLiteContext* context, TfLiteTensor* tensor,
                                   TfLiteIntArray* new_size);
  // Entry point for C node plugin API to report an error.
  static void ReportError(TfLiteContext* context, const char* format, ...);

  // Entry point for C node plugin API to add new tensors.
  static TfLiteStatus AddTensors(TfLiteContext* context, int tensors_to_add,
                                 int* first_new_tensor_index);

  // A pure C data structure used to communicate with the pure C plugin
  // interface. To avoid copying tensor metadata, this is also the definitive
  // structure to store tensors.
  TfLiteContext context_;

  // Node inputs/outputs are stored in TfLiteNode and TfLiteRegistration stores
  // function pointers to actual implementation.
  std::vector<std::pair<TfLiteNode, TfLiteRegistration>>
      nodes_and_registration_;

  // Whether the model is consistent. That is to say if the inputs and outputs
  // of every node and the global inputs and outputs are valid indexes into
  // the tensor array.
  bool consistent_ = true;

  // Whether the model is safe to invoke (if any errors occurred this
  // will be false).
  bool invokable_ = false;

  // Array of indices representing the tensors that are inputs to the
  // interpreter.
  std::vector<int> inputs_;

  // Array of indices representing the tensors that are outputs to the
  // interpreter.
  std::vector<int> outputs_;

  // The error reporter delegate that tflite will forward queries errors to.
  ErrorReporter* error_reporter_;

  // Index of the next node to prepare.
  // During Invoke(), Interpreter will allocate input tensors first, which are
  // known to be fixed size. Then it will allocate outputs from nodes as many
  // as possible. When there is a node that produces dynamic sized tensor.
  // Intepreter will stop allocating tensors, set the value of next allocate
  // node id, and execute the node to generate the output tensor before continue
  // to allocate successors. This process repeats until all nodes are executed.
  // NOTE: this relies on the order of nodes that is in topological order.
  int next_node_to_prepare_;

  // Whether to delegate to NN API
  std::unique_ptr<NNAPIDelegate> nnapi_delegate_;

  std::unique_ptr<MemoryPlanner> memory_planner_;
};

}  // namespace tflite
#endif  // THIRD_PARTY_TENSORFLOW_CONTRIB_LITE_INTERPRETER_H_