aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/g3doc/tflite_convert/cmdline_examples.md
blob: d88acfae80a8af9755d212973784194a99559097 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# TensorFlow Lite Converter command-line examples

This page shows how to use the TensorFlow Lite Converter in the command line.

[TOC]

## Command-line tools <a name="tools"></a>

There are two approaches to running the converter in the command line.

*   `tflite_convert`: Starting from TensorFlow 1.9, the command-line tool
    `tflite_convert` is installed as part of the Python package. All of the
    examples below use `tflite_convert` for simplicity.
    *   Example: `tflite_convert --output_file=...`
*   `bazel`: In order to run the latest version of the TensorFlow Lite Converter
    either install the nightly build using
    [pip](https://www.tensorflow.org/install/pip) or
    [clone the TensorFlow repository](https://www.tensorflow.org/install/source)
    and use `bazel`.
    *   Example: `bazel run
        //tensorflow/contrib/lite/python:tflite_convert --
        --output_file=...`

### Converting models prior to TensorFlow 1.9 <a name="pre-tensorflow-1.9"></a>

The recommended approach for using the converter prior to TensorFlow 1.9 is the
[Python API](python_api.md#pre-tensorflow-1.9). If a command line tool is
desired, the `toco` command line tool was available in TensorFlow 1.7. Enter
`toco --help` in Terminal for additional details on the command-line flags
available. There were no command line tools in TensorFlow 1.8.

## Basic examples <a name="basic"></a>

The following section shows examples of how to convert a basic float-point model
from each of the supported data formats into a TensorFlow Lite FlatBuffers.

### Convert a TensorFlow GraphDef <a name="graphdef"></a>

The follow example converts a basic TensorFlow GraphDef (frozen by
[freeze_graph.py](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py))
into a TensorFlow Lite FlatBuffer to perform floating-point inference. Frozen
graphs contain the variables stored in Checkpoint files as Const ops.

```
curl https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_0.50_128_frozen.tgz \
  | tar xzv -C /tmp
tflite_convert \
  --output_file=/tmp/foo.tflite \
  --graph_def_file=/tmp/mobilenet_v1_0.50_128/frozen_graph.pb \
  --input_arrays=input \
  --output_arrays=MobilenetV1/Predictions/Reshape_1
```

The value for `input_shapes` is automatically determined whenever possible.

### Convert a TensorFlow SavedModel <a name="savedmodel"></a>

The follow example converts a basic TensorFlow SavedModel into a Tensorflow Lite
FlatBuffer to perform floating-point inference.

```
tflite_convert \
  --output_file=/tmp/foo.tflite \
  --saved_model_dir=/tmp/saved_model
```

[SavedModel](https://www.tensorflow.org/guide/saved_model#using_savedmodel_with_estimators)
has fewer required flags than frozen graphs due to access to additional data
contained within the SavedModel. The values for `--input_arrays` and
`--output_arrays` are an aggregated, alphabetized list of the inputs and outputs
in the [SignatureDefs](https://www.tensorflow.org/serving/signature_defs) within
the
[MetaGraphDef](https://www.tensorflow.org/guide/saved_model#apis_to_build_and_load_a_savedmodel)
specified by `--saved_model_tag_set`. As with the GraphDef, the value for
`input_shapes` is automatically determined whenever possible.

There is currently no support for MetaGraphDefs without a SignatureDef or for
MetaGraphDefs that use the [`assets/`
directory](https://www.tensorflow.org/guide/saved_model#structure_of_a_savedmodel_directory).

### Convert a tf.Keras model <a name="keras"></a>

The following example converts a `tf.keras` model into a TensorFlow Lite
Flatbuffer. The `tf.keras` file must contain both the model and the weights.

```
tflite_convert \
  --output_file=/tmp/foo.tflite \
  --keras_model_file=/tmp/keras_model.h5
```

## Quantization

### Convert a TensorFlow GraphDef for quantized inference <a name="graphdef-quant"></a>

The TensorFlow Lite Converter is compatible with fixed point quantization models
described [here](https://www.tensorflow.org/performance/quantization). These are
float models with
[`FakeQuant*`](https://www.tensorflow.org/api_guides/python/array_ops#Fake_quantization)
ops inserted at the boundaries of fused layers to record min-max range
information. This generates a quantized inference workload that reproduces the
quantization behavior that was used during training.

The following command generates a quantized TensorFlow Lite FlatBuffer from a
"quantized" TensorFlow GraphDef.

```
tflite_convert \
  --output_file=/tmp/foo.tflite \
  --graph_def_file=/tmp/some_quantized_graph.pb \
  --inference_type=QUANTIZED_UINT8 \
  --input_arrays=input \
  --output_arrays=MobilenetV1/Predictions/Reshape_1 \
  --mean_values=128 \
  --std_dev_values=127
```

### Use \"dummy-quantization\" to try out quantized inference on a float graph <a name="dummy-quant"></a>

In order to evaluate the possible benefit of generating a quantized graph, the
converter allows "dummy-quantization" on float graphs. The flags
`--default_ranges_min` and `--default_ranges_max` accept plausible values for
the min-max ranges of the values in all arrays that do not have min-max
information. "Dummy-quantization" will produce lower accuracy but will emulate
the performance of a correctly quantized model.

The example below contains a model using Relu6 activation functions. Therefore,
a reasonable guess is that most activation ranges should be contained in [0, 6].

```
curl https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_0.50_128_frozen.tgz \
  | tar xzv -C /tmp
tflite_convert \
  --output_file=/tmp/foo.cc \
  --graph_def_file=/tmp/mobilenet_v1_0.50_128/frozen_graph.pb \
  --inference_type=QUANTIZED_UINT8 \
  --input_arrays=input \
  --output_arrays=MobilenetV1/Predictions/Reshape_1 \
  --default_ranges_min=0 \
  --default_ranges_max=6 \
  --mean_values=128 \
  --std_dev_values=127
```

## Specifying input and output arrays

### Multiple input arrays

The flag `input_arrays` takes in a comma-separated list of input arrays as seen
in the example below. This is useful for models or subgraphs with multiple
inputs.

```
curl https://storage.googleapis.com/download.tensorflow.org/models/inception_v1_2016_08_28_frozen.pb.tar.gz \
  | tar xzv -C /tmp
tflite_convert \
  --graph_def_file=/tmp/inception_v1_2016_08_28_frozen.pb \
  --output_file=/tmp/foo.tflite \
  --input_shapes=1,28,28,96:1,28,28,16:1,28,28,192:1,28,28,64 \
  --input_arrays=InceptionV1/InceptionV1/Mixed_3b/Branch_1/Conv2d_0a_1x1/Relu,InceptionV1/InceptionV1/Mixed_3b/Branch_2/Conv2d_0a_1x1/Relu,InceptionV1/InceptionV1/Mixed_3b/Branch_3/MaxPool_0a_3x3/MaxPool,InceptionV1/InceptionV1/Mixed_3b/Branch_0/Conv2d_0a_1x1/Relu \
  --output_arrays=InceptionV1/Logits/Predictions/Reshape_1
```

Note that `input_shapes` is provided as a colon-separated list. Each input shape
corresponds to the input array at the same position in the respective list.

### Multiple output arrays

The flag `output_arrays` takes in a comma-separated list of output arrays as
seen in the example below. This is useful for models or subgraphs with multiple
outputs.

```
curl https://storage.googleapis.com/download.tensorflow.org/models/inception_v1_2016_08_28_frozen.pb.tar.gz \
  | tar xzv -C /tmp
tflite_convert \
  --graph_def_file=/tmp/inception_v1_2016_08_28_frozen.pb \
  --output_file=/tmp/foo.tflite \
  --input_arrays=input \
  --output_arrays=InceptionV1/InceptionV1/Mixed_3b/Branch_1/Conv2d_0a_1x1/Relu,InceptionV1/InceptionV1/Mixed_3b/Branch_2/Conv2d_0a_1x1/Relu
```

### Specifying subgraphs

Any array in the input file can be specified as an input or output array in
order to extract subgraphs out of an input graph file. The TensorFlow Lite
Converter discards the parts of the graph outside of the specific subgraph. Use
[graph visualizations](#graph-visualizations) to identify the input and output
arrays that make up the desired subgraph.

The follow command shows how to extract a single fused layer out of a TensorFlow
GraphDef.

```
curl https://storage.googleapis.com/download.tensorflow.org/models/inception_v1_2016_08_28_frozen.pb.tar.gz \
  | tar xzv -C /tmp
tflite_convert \
  --graph_def_file=/tmp/inception_v1_2016_08_28_frozen.pb \
  --output_file=/tmp/foo.pb \
  --input_shapes=1,28,28,96:1,28,28,16:1,28,28,192:1,28,28,64 \
  --input_arrays=InceptionV1/InceptionV1/Mixed_3b/Branch_1/Conv2d_0a_1x1/Relu,InceptionV1/InceptionV1/Mixed_3b/Branch_2/Conv2d_0a_1x1/Relu,InceptionV1/InceptionV1/Mixed_3b/Branch_3/MaxPool_0a_3x3/MaxPool,InceptionV1/InceptionV1/Mixed_3b/Branch_0/Conv2d_0a_1x1/Relu \
  --output_arrays=InceptionV1/InceptionV1/Mixed_3b/concat_v2
```

Note that the final representation in TensorFlow Lite FlatBuffers tends to have
coarser granularity than the very fine granularity of the TensorFlow GraphDef
representation. For example, while a fully-connected layer is typically
represented as at least four separate ops in TensorFlow GraphDef (Reshape,
MatMul, BiasAdd, Relu...), it is typically represented as a single "fused" op
(FullyConnected) in the converter's optimized representation and in the final
on-device representation. As the level of granularity gets coarser, some
intermediate arrays (say, the array between the MatMul and the BiasAdd in the
TensorFlow GraphDef) are dropped.

When specifying intermediate arrays as `--input_arrays` and `--output_arrays`,
it is desirable (and often required) to specify arrays that are meant to survive
in the final form of the graph, after fusing. These are typically the outputs of
activation functions (since everything in each layer until the activation
function tends to get fused).

## Logging


## Graph visualizations

The converter can export a graph to the Graphviz Dot format for easy
visualization using either the `--output_format` flag or the
`--dump_graphviz_dir` flag. The subsections below outline the use cases for
each.

### Using `--output_format=GRAPHVIZ_DOT` <a name="using-output-format-graphviz-dot"></a>

The first way to get a Graphviz rendering is to pass `GRAPHVIZ_DOT` into
`--output_format`. This results in a plausible visualization of the graph. This
reduces the requirements that exist during conversion from a TensorFlow GraphDef
to a TensorFlow Lite FlatBuffer. This may be useful if the conversion to TFLite
is failing.

```
curl https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_0.50_128_frozen.tgz \
  | tar xzv -C /tmp
tflite_convert \
  --graph_def_file=/tmp/mobilenet_v1_0.50_128/frozen_graph.pb \
  --output_file=/tmp/foo.dot \
  --output_format=GRAPHVIZ_DOT \
  --input_shape=1,128,128,3 \
  --input_arrays=input \
  --output_arrays=MobilenetV1/Predictions/Reshape_1
```

The resulting `.dot` file can be rendered into a PDF as follows:

```
dot -Tpdf -O /tmp/foo.dot
```

And the resulting `.dot.pdf` can be viewed in any PDF viewer, but we suggest one
with a good ability to pan and zoom across a very large page. Google Chrome does
well in that respect.

```
google-chrome /tmp/foo.dot.pdf
```

Example PDF files are viewable online in the next section.

### Using `--dump_graphviz_dir`

The second way to get a Graphviz rendering is to pass the `--dump_graphviz_dir`
flag, specifying a destination directory to dump Graphviz rendering to. Unlike
the previous approach, this one retains the original output format. This
provides a visualization of the actual graph resulting from a specific
conversion process.

```
curl https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_0.50_128_frozen.tgz \
  | tar xzv -C /tmp
tflite_convert \
  --graph_def_file=/tmp/mobilenet_v1_0.50_128/frozen_graph.pb \
  --output_file=/tmp/foo.tflite \
  --input_arrays=input \
  --output_arrays=MobilenetV1/Predictions/Reshape_1 \
  --dump_graphviz_dir=/tmp
```

This generates a few files in the destination directory. The two most important
files are `toco_AT_IMPORT.dot` and `/tmp/toco_AFTER_TRANSFORMATIONS.dot`.
`toco_AT_IMPORT.dot` represents the original graph containing only the
transformations done at import time. This tends to be a complex visualization
with limited information about each node. It is useful in situations where a
conversion command fails.

`toco_AFTER_TRANSFORMATIONS.dot` represents the graph after all transformations
were applied to it, just before it is exported. Typically, this is a much
smaller graph with more information about each node.

As before, these can be rendered to PDFs:

```
dot -Tpdf -O /tmp/toco_*.dot
```

Sample output files can be seen here below. Note that it is the same
`AveragePool` node in the top right of each image.

<table><tr>
  <td>
    <a target="_blank" href="https://storage.googleapis.com/download.tensorflow.org/example_images/toco_AT_IMPORT.dot.pdf">
      <img src="https://www.tensorflow.org/images/tflite_convert/tflite_convert_before.png"/>
    </a>
  </td>
  <td>
    <a target="_blank" href="https://storage.googleapis.com/download.tensorflow.org/example_images/toco_AFTER_TRANSFORMATIONS.dot.pdf">
      <img src="https://www.tensorflow.org/images/tflite_convert/tflite_convert_after.png"/>
    </a>
  </td>
</tr>
<tr><td>before</td><td>after</td></tr>
</table>

### Graph "video" logging

When `--dump_graphviz_dir` is used, one may additionally pass
`--dump_graphviz_video`. This causes a graph visualization to be dumped after
each individual graph transformation, resulting in thousands of files.
Typically, one would then bisect into these files to understand when a given
change was introduced in the graph.

### Legend for the graph visualizations <a name="graphviz-legend"></a>

*   Operators are red square boxes with the following hues of red:
    *   Most operators are
        <span style="background-color:#db4437;color:white;border:1px;border-style:solid;border-color:black;padding:1px">bright
        red</span>.
    *   Some typically heavy operators (e.g. Conv) are rendered in a
        <span style="background-color:#c53929;color:white;border:1px;border-style:solid;border-color:black;padding:1px">darker
        red</span>.
*   Arrays are octagons with the following colors:
    *   Constant arrays are
        <span style="background-color:#4285f4;color:white;border:1px;border-style:solid;border-color:black;padding:1px">blue</span>.
    *   Activation arrays are gray:
        *   Internal (intermediate) activation arrays are
            <span style="background-color:#f5f5f5;border:1px;border-style:solid;border-color:black;border:1px;border-style:solid;border-color:black;padding:1px">light
            gray</span>.
        *   Those activation arrays that are designated as `--input_arrays` or
            `--output_arrays` are
            <span style="background-color:#9e9e9e;border:1px;border-style:solid;border-color:black;padding:1px">dark
            gray</span>.
    *   RNN state arrays are green. Because of the way that the converter
        represents RNN back-edges explicitly, each RNN state is represented by a
        pair of green arrays:
        *   The activation array that is the source of the RNN back-edge (i.e.
            whose contents are copied into the RNN state array after having been
            computed) is
            <span style="background-color:#b7e1cd;border:1px;border-style:solid;border-color:black;padding:1px">light
            green</span>.
        *   The actual RNN state array is
            <span style="background-color:#0f9d58;color:white;border:1px;border-style:solid;border-color:black;padding:1px">dark
            green</span>. It is the destination of the RNN back-edge updating
            it.