aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/delegates/nnapi/nnapi_delegate.cc
blob: 0c7f6d3125b9cafd15987f132a5f417e4c2f0c6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <cstdarg>
#include <iostream>
#include <memory>
#include <vector>

#include "tensorflow/contrib/lite/allocation.h"
#include "tensorflow/contrib/lite/builtin_op_data.h"
#include "tensorflow/contrib/lite/builtin_ops.h"
#include "tensorflow/contrib/lite/context.h"
#include "tensorflow/contrib/lite/context_util.h"
#include "tensorflow/contrib/lite/delegates/nnapi/nnapi_delegate.h"
#include "tensorflow/contrib/lite/kernels/kernel_util.h"
#include "tensorflow/contrib/lite/nnapi/NeuralNetworksShim.h"

#ifdef __ANDROID__
#include <sys/system_properties.h>
#endif

namespace tflite {
namespace {

// TODO(b/80621585): Consider printing error string, but don't for now to
// minimize binary size.
#define CHECK_NN(context, code)                                           \
  if (code != ANEURALNETWORKS_NO_ERROR) {                                 \
    context->ReportError(context, "NN API returned error (%d).\n", code); \
    return kTfLiteError;                                                  \
  }

namespace {
int32_t GetAndroidSdkVersion() {
#ifdef __ANDROID__
  const char* sdkProp = "ro.build.version.sdk";
  char sdkVersion[PROP_VALUE_MAX];
  int length = __system_property_get(sdkProp, sdkVersion);
  if (length != 0) {
    for (int i = 0; i < length; ++i) {
      int digit = sdkVersion[i] - '0';
      if (digit < 0 || digit > 9) {
        // Non-numeric SDK version, assume it's higher then expected;
        return std::numeric_limits<int32_t>::max();
      }
    }
    return atoi(sdkVersion);
  }
#endif  // __ANDROID__
  return 0;
}

constexpr int32_t kMinSdkVersionForNNAPI = 27;
constexpr int32_t kMinSdkVersionForNNAPI11 = 28;
static const int32_t kAndroidSdkVersion = GetAndroidSdkVersion();

}  // namespace

// RAII NN API Model Destructor for use with std::unique_ptr
struct NNFreeModel {
  void operator()(ANeuralNetworksModel* model) {
    ANeuralNetworksModel_free(model);
  }
};
// RAII NN API Compilation Destructor for use with std::unique_ptr
struct NNFreeCompilation {
  void operator()(ANeuralNetworksCompilation* model) {
    ANeuralNetworksCompilation_free(model);
  }
};

// Track tensor indices to NN API tensor indices mapping.
class OperandMapping {
 public:
  // Given a TFLite index return the ANN index. If it doesn't exist
  // return -1.
  int lite_index_to_ann(int index) const {
    if (index < lite_tensor_to_ann_tensor_.size())
      return lite_tensor_to_ann_tensor_[index];
    else
      return -1;
  }

  // NN API uses non tensor operands instead of structs. This creates one
  // and returns the index. It uses a std::vector and resizes it as needed
  // keeping -1 to unmapped values. Intermediate tensors likely will not
  // be mapped.
  int add_new_non_tensor_operand() { return next_ann_tensor_index_++; }

  // Add a new mapping from `tflite_index` and return the NN API tensor index.
  int add_new_ann_tensor_index(int tflite_index) {
    if (tflite_index >= lite_tensor_to_ann_tensor_.size()) {
      lite_tensor_to_ann_tensor_.resize(tflite_index + 1, -1);
    }
    int new_tensor_index = next_ann_tensor_index_++;
    lite_tensor_to_ann_tensor_[tflite_index] = new_tensor_index;
    return new_tensor_index;
  }

 private:
  // Next index of ann tensor
  int next_ann_tensor_index_ = 0;

  // Mapping from lite index. Use a std::vector for speed and code size
  // rather than a map.
  std::vector<int> lite_tensor_to_ann_tensor_;
};

// Abstract builder for building an op in the NN API graph. This handles
// the disparity between TFLite and NN API operand types. NN API has singular
// operands for both tensors and parameters, and TFLite separates the two.
class NNAPIOpBuilder {
 public:
  NNAPIOpBuilder(TfLiteContext* context, OperandMapping* tensor_mapping,
                 ANeuralNetworksModel* nn_model)
      : context_(context),
        operand_mapping_(tensor_mapping),
        nn_model_(nn_model) {}

  TfLiteStatus AddScalarInt32Operand(int32_t value) {
    return AddScalarOperand<int32_t>(value, ANEURALNETWORKS_INT32);
  }

  TfLiteStatus AddScalarFloat32Operand(float value) {
    return AddScalarOperand<float>(value, ANEURALNETWORKS_FLOAT32);
  }

  TfLiteStatus AddVectorInt32Operand(const int32_t* values,
                                     uint32_t num_values) {
    return AddVectorOperand<int32_t>(values, num_values,
                                     ANEURALNETWORKS_TENSOR_INT32);
  }

  TfLiteStatus AddPoolingParams(void* data) {
    auto builtin = reinterpret_cast<TfLitePoolParams*>(data);
    AddScalarInt32Operand(builtin->padding);
    AddScalarInt32Operand(builtin->stride_width);
    AddScalarInt32Operand(builtin->stride_height);
    AddScalarInt32Operand(builtin->filter_width);
    AddScalarInt32Operand(builtin->filter_height);
    AddScalarInt32Operand(builtin->activation);
    return kTfLiteOk;
  }

  TfLiteStatus AddTensorInput(int tensor_index) {
    int ann_index;
    TF_LITE_ENSURE_STATUS(AddTensor(tensor_index, &ann_index));
    augmented_inputs_.push_back(ann_index);
    return kTfLiteOk;
  }

  TfLiteStatus AddTensorOutput(int tensor_index) {
    int ann_index;
    TF_LITE_ENSURE_STATUS(AddTensor(tensor_index, &ann_index));
    augmented_outputs_.push_back(ann_index);
    return kTfLiteOk;
  }

  // Adds a new NN API tensor that shadows the TF Lite tensor `tensor_index`.
  // This returns the NN API tensor index corresponding to the created tensor.
  // If another caller previously created a NN API tensor for `tensor_index`
  // then the existing one is returned.
  TfLiteStatus AddTensor(int tensor_index, int* ann_tensor_index_out) {
    int ann_tensor_index = operand_mapping_->lite_index_to_ann(tensor_index);
    if (ann_tensor_index != -1) {
      *ann_tensor_index_out = ann_tensor_index;
      return kTfLiteOk;
    }
    // Allocate a new tensor index
    ann_tensor_index = operand_mapping_->add_new_ann_tensor_index(tensor_index);

    // Parameters needed for new type.
    int32_t nn_type = 0;
    float scale = 0.0f;
    int32_t zeroPoint = 0;
    TfLiteTensor* tensor = &context_->tensors[tensor_index];
    switch (tensor->type) {
      case kTfLiteNoType:
        // Tensors added during initialization of Ops don't have a type yet and
        // should not be registered with the NNAPI.
        *ann_tensor_index_out = -1;
        return kTfLiteOk;
      case kTfLiteFloat32:
        nn_type = ANEURALNETWORKS_TENSOR_FLOAT32;
        break;
      case kTfLiteUInt8:
        nn_type = ANEURALNETWORKS_TENSOR_QUANT8_ASYMM;
        scale = tensor->params.scale;
        zeroPoint = tensor->params.zero_point;
        break;
      case kTfLiteInt32:
        nn_type = ANEURALNETWORKS_TENSOR_INT32;
        scale = tensor->params.scale;
        zeroPoint = tensor->params.zero_point;
        break;
      default:
        context_->ReportError(context_, "Logic error in NN API Delegate.\n");
        return kTfLiteError;
    }

    ANeuralNetworksOperandType operand_type{
        nn_type, static_cast<uint32_t>(tensor->dims->size),
        reinterpret_cast<uint32_t*>(tensor->dims->data), scale, zeroPoint};
    CHECK_NN(context_,
             ANeuralNetworksModel_addOperand(nn_model_, &operand_type));

    if (tensor->allocation_type == kTfLiteMmapRo) {
      // TODO(b/80630405): Use NNAPIAllocation.
      CHECK_NN(context_, ANeuralNetworksModel_setOperandValue(
                             nn_model_, ann_tensor_index, tensor->data.raw,
                             tensor->bytes));
    }

    *ann_tensor_index_out = ann_tensor_index;
    return kTfLiteOk;
  }

  // Finish emitting the op (of type `type`) into the NN API.
  TfLiteStatus FinalizeAddOperation(ANeuralNetworksOperationType type) {
    // Actually add a NN API operation
    CHECK_NN(context_, ANeuralNetworksModel_addOperation(
                           nn_model_, type,
                           static_cast<uint32_t>(augmented_inputs_.size()),
                           augmented_inputs_.data(),
                           static_cast<uint32_t>(augmented_outputs_.size()),
                           augmented_outputs_.data()));
    augmented_inputs_.clear();
    augmented_outputs_.clear();
    return kTfLiteOk;
  }

 private:
  template <typename T>
  TfLiteStatus AddScalarOperand(T value, int32_t nn_type) {
    ANeuralNetworksOperandType operand_type{.type = nn_type};
    CHECK_NN(context_,
             ANeuralNetworksModel_addOperand(nn_model_, &operand_type));
    int ann_operand = operand_mapping_->add_new_non_tensor_operand();
    CHECK_NN(context_, ANeuralNetworksModel_setOperandValue(
                           nn_model_, ann_operand, &value, sizeof(T)));
    augmented_inputs_.push_back(ann_operand);
    return kTfLiteOk;
  }

  template <typename T>
  TfLiteStatus AddVectorOperand(const T* values, uint32_t num_values,
                                int32_t nn_type) {
    ANeuralNetworksOperandType operand_type{
        .type = nn_type, .dimensionCount = 1, .dimensions = &num_values};
    CHECK_NN(context_,
             ANeuralNetworksModel_addOperand(nn_model_, &operand_type));
    int ann_operand = operand_mapping_->add_new_non_tensor_operand();
    CHECK_NN(context_,
             ANeuralNetworksModel_setOperandValue(
                 nn_model_, ann_operand, values, sizeof(T) * num_values));
    augmented_inputs_.push_back(ann_operand);
    return kTfLiteOk;
  }

  // TfLiteContext for error handling. Must be named context for macros to
  // work.
  TfLiteContext* context_;

  // Tracks relationship between indices
  OperandMapping* operand_mapping_;

  // The model
  ANeuralNetworksModel* nn_model_;

  // Inputs and outputs for the current op. These are augmented in the sense
  // that NN API uses operands for all arguments, not just tensors, unlike
  // TensorFlow lite.
  std::vector<uint32_t> augmented_inputs_;
  std::vector<uint32_t> augmented_outputs_;
};

// The kernel that represents the subgraph of TF Lite being run on NN API.
class NNAPIDelegateKernel {
 public:
  NNAPIDelegateKernel() = default;

  typedef ANeuralNetworksOperationType (*MappingFn)(TfLiteContext*,
                                                    NNAPIOpBuilder* builder,
                                                    TfLiteNode* node);

  // Return a function that knows how to translate a node into its operands
  // when called. You can use this function to see if a node is supported
  // (i.e. that MappingFn is not nullptr).
  MappingFn Map(TfLiteContext* context, int builtin_code, int version,
                TfLiteNode* node) {
    switch (builtin_code) {
      case kTfLiteBuiltinAdd:
        if (version == 1) {
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            auto builtin =
                reinterpret_cast<TfLiteAddParams*>(node->builtin_data);
            builder->AddScalarInt32Operand(builtin->activation);
            return ANEURALNETWORKS_ADD;
          };
        } else {
          return nullptr;
        }
        break;
      case kTfLiteBuiltinMul:
        if (version == 1) {
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            auto builtin =
                reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
            builder->AddScalarInt32Operand(builtin->activation);
            return ANEURALNETWORKS_MUL;
          };
        } else {
          return nullptr;
        }
        break;
      case kTfLiteBuiltinAveragePool2d:
        if (version == 1) {
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            builder->AddPoolingParams(node->builtin_data);
            return ANEURALNETWORKS_AVERAGE_POOL_2D;
          };
        } else {
          return nullptr;
        }
        break;
      case kTfLiteBuiltinMaxPool2d:
        if (version == 1) {
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            builder->AddPoolingParams(node->builtin_data);
            return ANEURALNETWORKS_MAX_POOL_2D;
          };
        } else {
          return nullptr;
        }
        break;
      case kTfLiteBuiltinL2Pool2d:
        if (version == 1) {
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            builder->AddPoolingParams(node->builtin_data);
            return ANEURALNETWORKS_L2_POOL_2D;
          };
        } else {
          return nullptr;
        }
        break;
      case kTfLiteBuiltinConv2d:
        if (version == 1) {
          auto builtin =
              reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
          if (builtin->dilation_width_factor != 1 ||
              builtin->dilation_height_factor != 1 || node->inputs->size != 3) {
            // NNAPI does not support dilated Conv2D.
            return nullptr;
          }
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            auto builtin =
                reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
            builder->AddScalarInt32Operand(builtin->padding);
            builder->AddScalarInt32Operand(builtin->stride_width);
            builder->AddScalarInt32Operand(builtin->stride_height);
            builder->AddScalarInt32Operand(builtin->activation);
            return ANEURALNETWORKS_CONV_2D;
          };
        } else {
          return nullptr;
        }
        break;
      case kTfLiteBuiltinDepthwiseConv2d:
        if (version == 1) {
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            auto builtin = reinterpret_cast<TfLiteDepthwiseConvParams*>(
                node->builtin_data);
            builder->AddScalarInt32Operand(builtin->padding);
            builder->AddScalarInt32Operand(builtin->stride_width);
            builder->AddScalarInt32Operand(builtin->stride_height);
            builder->AddScalarInt32Operand(builtin->depth_multiplier);
            builder->AddScalarInt32Operand(builtin->activation);
            return ANEURALNETWORKS_DEPTHWISE_CONV_2D;
          };
        } else {
          return nullptr;
        }
        break;
      case kTfLiteBuiltinFullyConnected:
        if (version == 1) {
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            auto builtin = reinterpret_cast<TfLiteFullyConnectedParams*>(
                node->builtin_data);
            builder->AddScalarInt32Operand(builtin->activation);
            return ANEURALNETWORKS_FULLY_CONNECTED;
          };
        } else {
          return nullptr;
        }
        break;
      case kTfLiteBuiltinSoftmax:
        if (version == 1) {
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            auto builtin =
                reinterpret_cast<TfLiteSoftmaxParams*>(node->builtin_data);
            builder->AddScalarFloat32Operand(builtin->beta);
            return ANEURALNETWORKS_SOFTMAX;
          };
        } else {
          return nullptr;
        }
        break;
      case kTfLiteBuiltinReshape:
        if (version == 1) {
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            return ANEURALNETWORKS_RESHAPE;
          };
        } else {
          return nullptr;
        }
        break;
      case kTfLiteBuiltinSqueeze:
        // Squeeze requires NNAPI1.1.
        if (version == 1 && kAndroidSdkVersion >= kMinSdkVersionForNNAPI11) {
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            auto builtin =
                reinterpret_cast<TfLiteSqueezeParams*>(node->builtin_data);
            // Note that we add the squeeze dimensions even if the dimensions
            // were unspecified (empty), as NNAPI requires the operand.
            builder->AddVectorInt32Operand(
                builtin->squeeze_dims,
                static_cast<uint32_t>(builtin->num_squeeze_dims));
            return ANEURALNETWORKS_SQUEEZE;
          };
        } else {
          return nullptr;
        }
      case kTfLiteBuiltinL2Normalization: {
        auto builtin =
            reinterpret_cast<TfLiteL2NormParams*>(node->builtin_data);
        if (builtin->activation != kTfLiteActNone) {
          // NNAPI does not support activations
          return nullptr;
        }
        return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                  TfLiteNode* node) -> ANeuralNetworksOperationType {
          return ANEURALNETWORKS_L2_NORMALIZATION;
        };
      }
      case kTfLiteBuiltinTranspose:
        // Transpose requires NNAPI1.1. Also note that the permutation input
        // tensor value dictates the output dimensions.
        // TODO(b/110888333): Support dynamically-sized tensors in delegates.
        if ((version == 1) &&
            (kAndroidSdkVersion >= kMinSdkVersionForNNAPI11) &&
            (node->inputs->size > 1) &&
            (context->tensors[node->inputs->data[1]].allocation_type ==
             kTfLiteMmapRo)) {
          return [](TfLiteContext* context, NNAPIOpBuilder* builder,
                    TfLiteNode* node) -> ANeuralNetworksOperationType {
            return ANEURALNETWORKS_TRANSPOSE;
          };
        } else {
          return nullptr;
        }
        break;
      default:
        return nullptr;
    }
  }

  // Initialize the kernel (a NN model).
  TfLiteStatus Init(TfLiteContext* context,
                    const TfLiteDelegateParams* params) {
    for (auto node_index : TfLiteIntArrayView(params->nodes_to_replace)) {
      nodes_.push_back(node_index);
    }

    if (!nn_model_) {
      ANeuralNetworksModel* model;
      CHECK_NN(context, ANeuralNetworksModel_create(&model));
      nn_model_.reset(model);

      TF_LITE_ENSURE_STATUS(
          BuildGraph(context, params->input_tensors, params->output_tensors));
    }

    if (!nn_compilation_) {
      ANeuralNetworksCompilation* compilation;
      CHECK_NN(context, ANeuralNetworksCompilation_create(nn_model_.get(),
                                                          &compilation));
      CHECK_NN(context, ANeuralNetworksCompilation_finish(compilation));
      nn_compilation_.reset(compilation);
    }
    return kTfLiteOk;
  }

  TfLiteStatus Invoke(TfLiteContext* context, TfLiteNode* node) {
    ANeuralNetworksExecution* execution = nullptr;
    CHECK_NN(context, ANeuralNetworksExecution_create(nn_compilation_.get(),
                                                      &execution));

    // Set the input tensor buffers. Note: we access tflite tensors using
    // absolute indices but NN api indices inputs by relative indices.
    int relative_input_index = 0;
    for (auto absolute_input_index : TfLiteIntArrayView(node->inputs)) {
      TfLiteTensor* tensor = &context->tensors[absolute_input_index];
      // TODO(miaowang): make sure the delegation works with dequantized weights
      // as intermediate tensors.
      if (tensor->allocation_type != kTfLiteMmapRo) {
        CHECK_NN(context, ANeuralNetworksExecution_setInput(
                              execution, relative_input_index, nullptr,
                              tensor->data.raw, tensor->bytes));
        relative_input_index++;
      }
    }

    // Set the output tensor buffers.
    int relative_output_index = 0;
    for (auto output_index : TfLiteIntArrayView(node->outputs)) {
      TfLiteTensor* tensor = &context->tensors[output_index];
      CHECK_NN(context, ANeuralNetworksExecution_setOutput(
                            execution, relative_output_index, nullptr,
                            tensor->data.raw, tensor->bytes));
      relative_output_index++;
    }
    // Invoke ANN in blocking fashion.
    ANeuralNetworksEvent* event = nullptr;
    CHECK_NN(context, ANeuralNetworksExecution_startCompute(execution, &event));
    CHECK_NN(context, ANeuralNetworksEvent_wait(event));
    ANeuralNetworksEvent_free(event);
    ANeuralNetworksExecution_free(execution);

    return kTfLiteOk;
  }

 private:
  // ANN API state.
  std::unique_ptr<ANeuralNetworksModel, NNFreeModel> nn_model_;
  std::unique_ptr<ANeuralNetworksCompilation, NNFreeCompilation>
      nn_compilation_;
  // Node indices that this delegate is responsible for. Indices here
  // indexes into the nodes array in the TfLiteContext.
  std::vector<int> nodes_;
  // Track indices we use
  OperandMapping operand_mapping_;

  TfLiteStatus AddOpsAndTensors(TfLiteContext* context) {
    // The operand builder allows creating a single op. We create it at this
    // reduced power position rather than in the for loop to avoid reallocating
    // the vectors.
    NNAPIOpBuilder builder(context, &operand_mapping_, nn_model_.get());
    // Add Tensors
    // allocate outside to avoid realloc
    for (auto node_index : nodes_) {
      // Obtain the op and registration.
      TfLiteNode* node;
      TfLiteRegistration* reg;
      context->GetNodeAndRegistration(context, node_index, &node, &reg);
      // Map inputs to NN API tensor indices.
      for (auto input_index : TfLiteIntArrayView(node->inputs)) {
        TF_LITE_ENSURE_STATUS(builder.AddTensorInput(input_index));
      }
      // Get op type and operands
      int nn_op_type = Map(context, reg->builtin_code, reg->version, node)(
          context, &builder, node);
      // Map outputs to NN API tensor indices.
      for (auto output_index : TfLiteIntArrayView(node->outputs)) {
        TF_LITE_ENSURE_STATUS(builder.AddTensorOutput(output_index));
      }

      builder.FinalizeAddOperation(nn_op_type);
    }
    return kTfLiteOk;
  }

  TfLiteStatus BuildGraph(TfLiteContext* context,
                          const TfLiteIntArray* input_tensors,
                          const TfLiteIntArray* output_tensors) {
    // Build the ops and tensors.
    TF_LITE_ENSURE_STATUS(AddOpsAndTensors(context));
    // Map input and output tensor indices to ANN
    std::vector<uint32_t> inputs;
    inputs.reserve(input_tensors->size);
    std::vector<uint32_t> outputs;
    outputs.reserve(output_tensors->size);
    // Make the TensorFlow lite inputs and outputs to ann_indices.
    for (int i : TfLiteIntArrayView(input_tensors)) {
      // Constant tensors are not NNAPI inputs.
      if (context->tensors[i].allocation_type != kTfLiteMmapRo) {
        inputs.push_back(operand_mapping_.lite_index_to_ann(i));
      }
    }
    for (int i : TfLiteIntArrayView(output_tensors))
      outputs.push_back(operand_mapping_.lite_index_to_ann(i));
    // Tell ANN to declare inputs/outputs
    CHECK_NN(context, ANeuralNetworksModel_identifyInputsAndOutputs(
                          nn_model_.get(), inputs.size(), inputs.data(),
                          outputs.size(), outputs.data()));
    // Finalize the model
    CHECK_NN(context, ANeuralNetworksModel_finish(nn_model_.get()));

    return kTfLiteOk;
  }
};

}  // namespace

// Return a NN API Delegate struct that can check for support of ops.
TfLiteDelegate* NnApiDelegate() {
  static TfLiteDelegate delegate = {
      .data_ = nullptr,
      .Prepare = [](TfLiteContext* context,
                    TfLiteDelegate* delegate) -> TfLiteStatus {
        // Do not check nodes_ if NN API is unavailable.
        if (kAndroidSdkVersion < kMinSdkVersionForNNAPI || !NNAPIExists()) {
          return kTfLiteOk;
        }

        std::vector<int> supported_nodes(1);
        // We don't care about all nodes_, we only care about ones in the
        // current plan.
        TfLiteIntArray* plan;
        TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &plan));
        int total_supported_nodes = 0;

        // Check for every node if it is supported
        // TODO(b/80625235): Fix this to do more careful checking of versioning.
        for (int node_index : TfLiteIntArrayView(plan)) {
          TfLiteNode* node;
          TfLiteRegistration* registration;
          TF_LITE_ENSURE_STATUS(context->GetNodeAndRegistration(
              context, node_index, &node, &registration));
          NNAPIDelegateKernel dummy_kernel;
          if (dummy_kernel.Map(context, registration->builtin_code,
                               registration->version, node)) {
            supported_nodes.push_back(node_index);
          }
          total_supported_nodes += 1;
        }
        // Put the size at the beginning of the array.
        supported_nodes[0] = supported_nodes.size() - 1;

        // NN API Delegate Registration (the pseudo kernel that will invoke NN
        // API subgraphs)
        static const TfLiteRegistration nnapi_delegate_kernel = {
            .init = [](TfLiteContext* context, const char* buffer,
                       size_t length) -> void* {
              const TfLiteDelegateParams* params =
                  reinterpret_cast<const TfLiteDelegateParams*>(buffer);
              NNAPIDelegateKernel* kernel_state = new NNAPIDelegateKernel;
              kernel_state->Init(context, params);
              return kernel_state;
            },

            .free = [](TfLiteContext* context, void* buffer) -> void {
              delete reinterpret_cast<NNAPIDelegateKernel*>(buffer);
            },

            .prepare = [](TfLiteContext* context,
                          TfLiteNode* node) -> TfLiteStatus {
              // Since the underlying resize happened ahead of delegation
              // worked. This does nothing.
              return kTfLiteOk;
            },

            .invoke = [](TfLiteContext* context,
                         TfLiteNode* node) -> TfLiteStatus {
              NNAPIDelegateKernel* state =
                  reinterpret_cast<NNAPIDelegateKernel*>(node->user_data);
              return state->Invoke(context, node);
            },

            .builtin_code = kTfLiteBuiltinDelegate,
        };

        // Request TFLite to partition the graph and make kernels
        // for each independent subgraph a new nnapi_delegate_kernel.
        context->ReplaceSubgraphsWithDelegateKernels(
            context, nnapi_delegate_kernel,
            reinterpret_cast<TfLiteIntArray*>(supported_nodes.data()),
            delegate);
        return kTfLiteOk;
      }};

  return &delegate;
}

}  // namespace tflite