aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/linear_optimizer/python/sdca_optimizer.py
blob: 9872c6f97c879d8994b6c26e65df33e368a0603e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""Linear Estimators."""
#  Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.contrib import layers
from tensorflow.contrib.linear_optimizer.python.ops import sdca_ops
from tensorflow.contrib.linear_optimizer.python.ops.sparse_feature_column import SparseFeatureColumn
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops


# TODO(sibyl-vie3Poto, sibyl-Aix6ihai): Add proper testing to this wrapper once the API is
# stable.
class SDCAOptimizer(object):
  """Wrapper class for SDCA optimizer.

  The wrapper is currently meant for use as an optimizer within a tf.learn
  Estimator.

  Example usage:

  ```python
  real_feature_column = real_valued_column(...)
  sparse_feature_column = sparse_column_with_hash_bucket(...)
  sdca_optimizer = linear.SDCAOptimizer(example_id_column='example_id',
                                        num_loss_partitions=1,
                                        num_table_shards=1,
                                        symmetric_l2_regularization=2.0)
  classifier = tf.contrib.learn.LinearClassifier(
      feature_columns=[real_feature_column, sparse_feature_column],
      weight_column_name=...,
      optimizer=sdca_optimizer)
  classifier.fit(input_fn_train, steps=50)
  classifier.evaluate(input_fn=input_fn_eval)
  ```

  Here the expectation is that the `input_fn_*` functions passed to train and
  evaluate return a pair (dict, label_tensor) where dict has `example_id_column`
  as `key` whose value is a `Tensor` of shape [batch_size] and dtype string.
  num_loss_partitions defines the number of partitions of the global loss
  function and should be set to `(#concurrent train ops/per worker)
  x (#workers)`.
  Convergence of (global) loss is guaranteed if `num_loss_partitions` is larger
  or equal to the above product. Larger values for `num_loss_partitions` lead to
  slower convergence. The recommended value for `num_loss_partitions` in
  `tf.learn` (where currently there is one process per worker) is the number
  of workers running the train steps. It defaults to 1 (single machine).
  `num_table_shards` defines the number of shards for the internal state
  table, typically set to match the number of parameter servers for large
  data sets. You can also specify a `partitioner` object to partition the primal
  weights during training (`div` partitioning strategy will be used).
  """

  def __init__(self,
               example_id_column,
               num_loss_partitions=1,
               num_table_shards=None,
               symmetric_l1_regularization=0.0,
               symmetric_l2_regularization=1.0,
               adaptive=True,
               partitioner=None):
    self._example_id_column = example_id_column
    self._num_loss_partitions = num_loss_partitions
    self._num_table_shards = num_table_shards
    self._symmetric_l1_regularization = symmetric_l1_regularization
    self._symmetric_l2_regularization = symmetric_l2_regularization
    self._adaptive = adaptive
    self._partitioner = partitioner

  def get_name(self):
    return 'SDCAOptimizer'

  @property
  def example_id_column(self):
    return self._example_id_column

  @property
  def num_loss_partitions(self):
    return self._num_loss_partitions

  @property
  def num_table_shards(self):
    return self._num_table_shards

  @property
  def symmetric_l1_regularization(self):
    return self._symmetric_l1_regularization

  @property
  def symmetric_l2_regularization(self):
    return self._symmetric_l2_regularization

  @property
  def adaptive(self):
    return self._adaptive

  @property
  def partitioner(self):
    return self._partitioner

  def get_train_step(self, columns_to_variables, weight_column_name, loss_type,
                     features, targets, global_step):
    """Returns the training operation of an SdcaModel optimizer."""

    def _dense_tensor_to_sparse_feature_column(dense_tensor):
      """Returns SparseFeatureColumn for the input dense_tensor."""
      ignore_value = 0.0
      sparse_indices = array_ops.where(
          math_ops.not_equal(dense_tensor,
                             math_ops.cast(ignore_value, dense_tensor.dtype)))
      sparse_values = array_ops.gather_nd(dense_tensor, sparse_indices)
      # TODO(sibyl-Aix6ihai, sibyl-vie3Poto): Makes this efficient, as now SDCA supports
      # very sparse features with weights and not weights.
      return SparseFeatureColumn(
          array_ops.reshape(
              array_ops.split(
                  value=sparse_indices, num_or_size_splits=2, axis=1)[0], [-1]),
          array_ops.reshape(
              array_ops.split(
                  value=sparse_indices, num_or_size_splits=2, axis=1)[1], [-1]),
          array_ops.reshape(math_ops.to_float(sparse_values), [-1]))

    def _training_examples_and_variables():
      """Returns dictionaries for training examples and variables."""
      batch_size = targets.get_shape()[0]

      # Iterate over all feature columns and create appropriate lists for dense
      # and sparse features as well as dense and sparse weights (variables) for
      # SDCA.
      # TODO(sibyl-vie3Poto): Reshape variables stored as values in column_to_variables
      # dict as 1-dimensional tensors.
      dense_features, sparse_features, sparse_feature_with_values = [], [], []
      dense_feature_weights = []
      sparse_feature_weights, sparse_feature_with_values_weights = [], []
      for column in sorted(columns_to_variables.keys(), key=lambda x: x.key):
        transformed_tensor = features[column]
        if isinstance(column, layers.feature_column._RealValuedColumn):  # pylint: disable=protected-access
          # A real-valued column corresponds to a dense feature in SDCA. A
          # transformed tensor corresponding to a RealValuedColumn should have
          # rank at most 2. In order to be passed to SDCA, its rank needs to be
          # exactly 2 (i.e., its shape should be [batch_size, column.dim]).
          check_rank_op = control_flow_ops.Assert(
              math_ops.less_equal(array_ops.rank(transformed_tensor), 2),
              ['transformed_tensor shouls have rank at most 2.'])
          # Reshape to [batch_size, dense_column_dimension].
          with ops.control_dependencies([check_rank_op]):
            transformed_tensor = array_ops.reshape(transformed_tensor, [
                array_ops.shape(transformed_tensor)[0], -1
            ])

          dense_features.append(transformed_tensor)
          # For real valued columns, the variables list contains exactly one
          # element.
          dense_feature_weights.append(columns_to_variables[column][0])
        elif isinstance(column, layers.feature_column._BucketizedColumn):  # pylint: disable=protected-access
          # A bucketized column corresponds to a sparse feature in SDCA. The
          # bucketized feature is "sparsified" for SDCA by converting it to a
          # SparseFeatureColumn respresenting the one-hot encoding of the
          # bucketized feature.
          #
          # TODO(sibyl-vie3Poto): Explore whether it is more efficient to translate a
          # bucketized feature column to a dense feature in SDCA. This will
          # likely depend on the number of buckets.
          dense_bucket_tensor = column._to_dnn_input_layer(transformed_tensor)  # pylint: disable=protected-access
          sparse_feature_column = _dense_tensor_to_sparse_feature_column(
              dense_bucket_tensor)
          sparse_feature_with_values.append(sparse_feature_column)
          # If a partitioner was used during variable creation, we will have a
          # list of Variables here larger than 1.
          vars_to_append = columns_to_variables[column][0]
          if len(columns_to_variables[column]) > 1:
            vars_to_append = columns_to_variables[column]
          sparse_feature_with_values_weights.append(vars_to_append)
        elif isinstance(
            column,
            (
                layers.feature_column._WeightedSparseColumn,  # pylint: disable=protected-access
                layers.feature_column._CrossedColumn,  # pylint: disable=protected-access
                layers.feature_column._SparseColumn)):  # pylint: disable=protected-access

          if isinstance(column, layers.feature_column._WeightedSparseColumn):  # pylint: disable=protected-access
            id_tensor = column.id_tensor(transformed_tensor)
            weight_tensor = array_ops.reshape(
                column.weight_tensor(transformed_tensor).values, [-1])
          else:
            id_tensor = transformed_tensor
            weight_tensor = array_ops.ones(
                [array_ops.shape(id_tensor.indices)[0]], dtypes.float32)

          example_ids = array_ops.reshape(id_tensor.indices[:, 0], [-1])

          flat_ids = array_ops.reshape(id_tensor.values, [-1])
          # Prune invalid IDs (< 0) from the flat_ids, example_ids, and
          # weight_tensor.  These can come from looking up an OOV entry in the
          # vocabulary (default value being -1).
          is_id_valid = math_ops.greater_equal(flat_ids, 0)
          flat_ids = array_ops.boolean_mask(flat_ids, is_id_valid)
          example_ids = array_ops.boolean_mask(example_ids, is_id_valid)
          weight_tensor = array_ops.boolean_mask(weight_tensor, is_id_valid)

          projection_length = math_ops.reduce_max(flat_ids) + 1
          # project ids based on example ids so that we can dedup ids that
          # occur multiple times for a single example.
          projected_ids = projection_length * example_ids + flat_ids

          # Remove any redudant ids.
          ids, idx = array_ops.unique(projected_ids)
          # Keep only one example id per duplicated ids.
          example_ids_filtered = math_ops.unsorted_segment_min(
              example_ids, idx,
              array_ops.shape(ids)[0])

          # reproject ids back feature id space.
          reproject_ids = (ids - projection_length * example_ids_filtered)

          weights = array_ops.reshape(
              math_ops.unsorted_segment_sum(weight_tensor, idx,
                                            array_ops.shape(ids)[0]), [-1])
          sparse_feature_with_values.append(
              SparseFeatureColumn(example_ids_filtered, reproject_ids, weights))
          # If a partitioner was used during variable creation, we will have a
          # list of Variables here larger than 1.
          vars_to_append = columns_to_variables[column][0]
          if len(columns_to_variables[column]) > 1:
            vars_to_append = columns_to_variables[column]
          sparse_feature_with_values_weights.append(vars_to_append)
        else:
          raise ValueError('SDCAOptimizer does not support column type %s.' %
                           type(column).__name__)

      example_weights = array_ops.reshape(
          features[weight_column_name],
          shape=[-1]) if weight_column_name else array_ops.ones([batch_size])
      example_ids = features[self._example_id_column]
      sparse_feature_with_values.extend(sparse_features)
      sparse_feature_with_values_weights.extend(sparse_feature_weights)
      examples = dict(
          sparse_features=sparse_feature_with_values,
          dense_features=dense_features,
          example_labels=math_ops.to_float(
              array_ops.reshape(targets, shape=[-1])),
          example_weights=example_weights,
          example_ids=example_ids)
      sdca_variables = dict(
          sparse_features_weights=sparse_feature_with_values_weights,
          dense_features_weights=dense_feature_weights)
      return examples, sdca_variables

    training_examples, training_variables = _training_examples_and_variables()
    sdca_model = sdca_ops.SdcaModel(
        examples=training_examples,
        variables=training_variables,
        options=dict(
            symmetric_l1_regularization=self._symmetric_l1_regularization,
            symmetric_l2_regularization=self._symmetric_l2_regularization,
            adaptive=self._adaptive,
            num_loss_partitions=self._num_loss_partitions,
            num_table_shards=self._num_table_shards,
            loss_type=loss_type))
    train_op = sdca_model.minimize(global_step=global_step)
    return sdca_model, train_op