aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/linear_optimizer/python/sdca_optimizer.py
blob: b6e59b02b668789810330d490f57d552a1cd74ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""Linear Estimators."""
#  Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.contrib import layers
from tensorflow.contrib.linear_optimizer.python.ops import sdca_ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops


# TODO(sibyl-vie3Poto, sibyl-Aix6ihai): Add proper testing to this wrapper once the API is
# stable.
class SDCAOptimizer(object):
  """Wrapper class for SDCA optimizer.

  The wrapper is currently meant for use as an optimizer within a tf.learn
  Estimator.

  Example usage:
    real_feature_column = real_valued_column(...)
    sparse_feature_column = sparse_column_with_hash_bucket(...)
    sdca_optimizer = linear.SDCAOptimizer(example_id_column='example_id',
                                          num_loss_partitions=1,
                                          num_table_shards=1,
                                          symmetric_l2_regularization=2.0)
    classifier = tf.contrib.learn.LinearClassifier(
        feature_columns=[real_feature_column, sparse_feature_column],
        weight_column_name=...,
        optimizer=sdca_optimizer)
    classifier.fit(input_fn_train, steps=50)
    classifier.evaluate(input_fn=input_fn_eval)

  Here the expectation is that the input_fn_* functions passed to train and
  evaluate return a pair (dict, label_tensor) where dict has `example_id_column`
  as `key` whose value is an `Output` of shape [batch_size] and dtype string.
  num_loss_partitions defines the number of partitions of the global loss
  function and should be set to (#concurrent train ops/per worker) x (#workers).
  Convergence of (global) loss is guaranteed if num_loss_partitions is larger or
  equal to the above product. Larger values for num_loss_partitions lead to
  slower convergence. The recommended value for num_loss_partitions in tf.learn
  (where currently there is one process per worker) is the number of workers
  running the train steps. It defaults to 1 (single machine). num_table_shards
  defines the number of shards for the internal state table, typically set to
  match the number of parameter servers for large data sets.
  """

  def __init__(self,
               example_id_column,
               num_loss_partitions=1,
               num_table_shards=None,
               symmetric_l1_regularization=0.0,
               symmetric_l2_regularization=1.0):
    self._example_id_column = example_id_column
    self._num_loss_partitions = num_loss_partitions
    self._num_table_shards = num_table_shards
    self._symmetric_l1_regularization = symmetric_l1_regularization
    self._symmetric_l2_regularization = symmetric_l2_regularization

  def get_name(self):
    return 'SDCAOptimizer'

  def get_train_step(self, columns_to_variables,
                     weight_column_name, loss_type, features, targets,
                     global_step):
    """Returns the training operation of an SdcaModel optimizer."""

    def _tensor_to_sparse_feature_column(dense_tensor):
      """Returns SparseFeatureColumn for the input dense_tensor."""
      ignore_value = 0.0
      sparse_indices = array_ops.where(math_ops.not_equal(
          dense_tensor, math_ops.cast(ignore_value, dense_tensor.dtype)))
      sparse_values = array_ops.gather_nd(dense_tensor, sparse_indices)
      # TODO(sibyl-Aix6ihai, sibyl-vie3Poto): Makes this efficient, as now SDCA supports
      # very sparse features with weights and not weights.
      return sdca_ops.SparseFeatureColumn(
          array_ops.reshape(
              array_ops.split(1, 2, sparse_indices)[0], [-1]),
          array_ops.reshape(
              array_ops.split(1, 2, sparse_indices)[1], [-1]),
          array_ops.reshape(
              math_ops.to_float(sparse_values), [-1]))

    def _training_examples_and_variables():
      """Returns dictionaries for training examples and variables."""
      batch_size = targets.get_shape()[0]

      # Iterate over all feature columns and create appropriate lists for dense
      # and sparse features as well as dense and sparse weights (variables) for
      # SDCA.
      # TODO(sibyl-vie3Poto): Reshape variables stored as values in column_to_variables
      # dict as 1-dimensional tensors.
      dense_features, sparse_features, sparse_feature_with_values = [], [], []
      dense_feature_weights = []
      sparse_feature_weights, sparse_feature_with_values_weights = [], []
      # pylint: disable=protected-access
      for column in sorted(columns_to_variables.keys(), key=lambda x: x.key):
        transformed_tensor = features[column]
        if isinstance(column, layers.feature_column._RealValuedColumn):
          # A real-valued column corresponds to a dense feature in SDCA. A
          # transformed tensor corresponding to a RealValuedColumn has rank 2
          # (its shape is typically [batch_size, column.dimension]) and so it
          # can be passed to SDCA as is.
          dense_features.append(transformed_tensor)
          # For real valued columns, the variables list contains exactly one
          # element.
          dense_feature_weights.append(columns_to_variables[column][0])
        elif isinstance(column, layers.feature_column._BucketizedColumn):
          # A bucketized column corresponds to a sparse feature in SDCA. The
          # bucketized feature is "sparsified" for SDCA by converting it to a
          # SparseFeatureColumn respresenting the one-hot encoding of the
          # bucketized feature.
          dense_bucket_tensor = layers.input_from_feature_columns(
              {column: transformed_tensor}, [column])
          sparse_feature_column = _tensor_to_sparse_feature_column(
              dense_bucket_tensor)
          sparse_feature_with_values.append(sparse_feature_column)
          # For bucketized columns, the variables list contains exactly one
          # element.
          sparse_feature_with_values_weights.append(
              columns_to_variables[column][0])
        elif isinstance(column, (layers.feature_column._CrossedColumn,
                                 layers.feature_column._SparseColumn)):
          sparse_features.append(sdca_ops.SparseFeatureColumn(
              array_ops.reshape(
                  array_ops.split(1, 2, transformed_tensor.indices)[0], [-1]),
              array_ops.reshape(transformed_tensor.values, [-1]), None))
          sparse_feature_weights.append(columns_to_variables[column][0])
        elif isinstance(column, layers.feature_column._WeightedSparseColumn):
          id_tensor = column.id_tensor(transformed_tensor)
          weight_tensor = column.weight_tensor(transformed_tensor)
          sparse_feature_with_values.append(sdca_ops.SparseFeatureColumn(
              array_ops.reshape(
                  array_ops.split(1, 2, id_tensor.indices)[0], [-1]),
              array_ops.reshape(id_tensor.values, [-1]), array_ops.reshape(
                  weight_tensor.values, [-1])))
          sparse_feature_with_values_weights.append(
            columns_to_variables[column][0])
        else:
          raise ValueError('SDCAOptimizer does not support column type %s.' %
                           type(column).__name__)
      # pylint: enable=protected-access

      example_weights = array_ops.reshape(
          features[weight_column_name],
          shape=[-1]) if weight_column_name else array_ops.ones([batch_size])
      example_ids = features[self._example_id_column]
      sparse_feature_with_values.extend(sparse_features)
      sparse_feature_with_values_weights.extend(sparse_feature_weights)
      examples = dict(sparse_features=sparse_feature_with_values,
                      dense_features=dense_features,
                      example_labels=math_ops.to_float(array_ops.reshape(
                          targets, shape=[-1])),
                      example_weights=example_weights,
                      example_ids=example_ids)
      sdca_variables = dict(
          sparse_features_weights=sparse_feature_with_values_weights,
          dense_features_weights=dense_feature_weights)
      return examples, sdca_variables

    training_examples, training_variables = _training_examples_and_variables()
    sdca_model = sdca_ops.SdcaModel(
        examples=training_examples,
        variables=training_variables,
        options=dict(
            symmetric_l1_regularization=self._symmetric_l1_regularization,
            symmetric_l2_regularization=self._symmetric_l2_regularization,
            num_loss_partitions=self._num_loss_partitions,
            num_table_shards=self._num_table_shards,
            loss_type=loss_type))
    train_op = sdca_model.minimize(global_step=global_step)
    return sdca_model, train_op