aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/linear_optimizer/python/ops/sdca_ops.py
blob: 48ac429701afd421bfe0b24d3b8e4f0c43e80dfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Proximal stochastic dual coordinate ascent optimizer for linear models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections

from six.moves import range

from tensorflow.contrib.linear_optimizer.python.ops.sharded_mutable_dense_hashtable import ShardedMutableDenseHashTable
from tensorflow.python.compat import compat
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework.ops import internal_convert_to_tensor
from tensorflow.python.framework.ops import name_scope
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import data_flow_ops
from tensorflow.python.ops import gen_sdca_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variables as var_ops
from tensorflow.python.ops.nn import log_poisson_loss
from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits
from tensorflow.python.summary import summary

__all__ = ['SdcaModel']


# TODO(sibyl-Aix6ihai): add name_scope to appropriate methods.
class SdcaModel(object):
  """Stochastic dual coordinate ascent solver for linear models.

    Loss functions supported:

     * Binary logistic loss
     * Squared loss
     * Hinge loss
     * Smooth hinge loss
     * Poisson log loss

    This class defines an optimizer API to train a linear model.

    ### Usage

    ```python
    # Create a solver with the desired parameters.
    lr = tf.contrib.linear_optimizer.SdcaModel(examples, variables, options)
    min_op = lr.minimize()
    opt_op = lr.update_weights(min_op)

    predictions = lr.predictions(examples)
    # Primal loss + L1 loss + L2 loss.
    regularized_loss = lr.regularized_loss(examples)
    # Primal loss only
    unregularized_loss = lr.unregularized_loss(examples)

    examples: {
      sparse_features: list of SparseFeatureColumn.
      dense_features: list of dense tensors of type float32.
      example_labels: a tensor of type float32 and shape [Num examples]
      example_weights: a tensor of type float32 and shape [Num examples]
      example_ids: a tensor of type string and shape [Num examples]
    }
    variables: {
      sparse_features_weights: list of tensors of shape [vocab size]
      dense_features_weights: list of tensors of shape [dense_feature_dimension]
    }
    options: {
      symmetric_l1_regularization: 0.0
      symmetric_l2_regularization: 1.0
      loss_type: "logistic_loss"
      num_loss_partitions: 1 (Optional, with default value of 1. Number of
      partitions of the global loss function, 1 means single machine solver,
      and >1 when we have more than one optimizer working concurrently.)
      num_table_shards: 1 (Optional, with default value of 1. Number of shards
      of the internal state table, typically set to match the number of
      parameter servers for large data sets.
    }
    ```

    In the training program you will just have to run the returned Op from
    minimize().

    ```python
    # Execute opt_op and train for num_steps.
    for _ in range(num_steps):
      opt_op.run()

    # You can also check for convergence by calling
    lr.approximate_duality_gap()
    ```
  """

  def __init__(self, examples, variables, options):
    """Create a new sdca optimizer."""

    if not examples or not variables or not options:
      raise ValueError('examples, variables and options must all be specified.')

    supported_losses = ('logistic_loss', 'squared_loss', 'hinge_loss',
                        'smooth_hinge_loss', 'poisson_loss')
    if options['loss_type'] not in supported_losses:
      raise ValueError('Unsupported loss_type: ', options['loss_type'])

    self._assertSpecified([
        'example_labels', 'example_weights', 'example_ids', 'sparse_features',
        'dense_features'
    ], examples)
    self._assertList(['sparse_features', 'dense_features'], examples)

    self._assertSpecified(['sparse_features_weights', 'dense_features_weights'],
                          variables)
    self._assertList(['sparse_features_weights', 'dense_features_weights'],
                     variables)

    self._assertSpecified([
        'loss_type', 'symmetric_l2_regularization',
        'symmetric_l1_regularization'
    ], options)

    for name in ['symmetric_l1_regularization', 'symmetric_l2_regularization']:
      value = options[name]
      if value < 0.0:
        raise ValueError('%s should be non-negative. Found (%f)' %
                         (name, value))

    self._examples = examples
    self._variables = variables
    self._options = options
    self._create_slots()
    self._hashtable = ShardedMutableDenseHashTable(
        key_dtype=dtypes.int64,
        value_dtype=dtypes.float32,
        num_shards=self._num_table_shards(),
        default_value=[0.0, 0.0, 0.0, 0.0],
        # SdcaFprint never returns 0 or 1 for the low64 bits, so this a safe
        # empty_key (that will never collide with actual payloads).
        empty_key=[0, 0])

    summary.scalar('approximate_duality_gap', self.approximate_duality_gap())
    summary.scalar('examples_seen', self._hashtable.size())

  def _symmetric_l1_regularization(self):
    return self._options['symmetric_l1_regularization']

  def _symmetric_l2_regularization(self):
    # Algorithmic requirement (for now) is to have minimal l2 of 1.0.
    return max(self._options['symmetric_l2_regularization'], 1.0)

  def _num_loss_partitions(self):
    # Number of partitions of the global objective.
    # TODO(andreasst): set num_loss_partitions automatically based on the number
    # of workers
    return self._options.get('num_loss_partitions', 1)

  def _adaptive(self):
    # Perform adaptive sampling.
    return self._options.get('adaptive', True)

  def _num_table_shards(self):
    # Number of hash table shards.
    # Return 1 if not specified or if the value is 'None'
    # TODO(andreasst): set num_table_shards automatically based on the number
    # of parameter servers
    num_shards = self._options.get('num_table_shards')
    return 1 if num_shards is None else num_shards

  # TODO(sibyl-Aix6ihai): Use optimizer interface to make use of slot creation logic.
  def _create_slots(self):
    """Make unshrinked internal variables (slots)."""
    # Unshrinked variables have the updates before applying L1 regularization.
    # Each unshrinked slot variable is either a `Variable` or list of
    # `Variable`, depending on the value of its corresponding primary variable.
    # We avoid using `PartitionedVariable` for the unshrinked slots since we do
    # not need any of the extra information.
    self._slots = collections.defaultdict(list)
    for name in ['sparse_features_weights', 'dense_features_weights']:
      for var in self._variables[name]:
        # Our primary variable may be either a PartitionedVariable, or a list
        # of Variables (each representing a partition).
        if (isinstance(var, var_ops.PartitionedVariable) or
            isinstance(var, list)):
          var_list = []
          # pylint: disable=protected-access
          for v in var:
            with ops.colocate_with(v):
              # TODO(andreasst): remove SDCAOptimizer suffix once bug 30843109
              # is fixed.
              slot_var = var_ops.Variable(
                  initial_value=array_ops.zeros_like(v.initialized_value(),
                                                     dtypes.float32),
                  name=v.op.name + '_unshrinked/SDCAOptimizer')
              var_list.append(slot_var)
          self._slots['unshrinked_' + name].append(var_list)
          # pylint: enable=protected-access
        else:
          with ops.device(var.device):
            # TODO(andreasst): remove SDCAOptimizer suffix once bug 30843109 is
            # fixed.
            self._slots['unshrinked_' + name].append(
                var_ops.Variable(
                    array_ops.zeros_like(var.initialized_value(),
                                         dtypes.float32),
                    name=var.op.name + '_unshrinked/SDCAOptimizer'))

  def _assertSpecified(self, items, check_in):
    for x in items:
      if check_in[x] is None:
        raise ValueError(check_in[x] + ' must be specified.')

  def _assertList(self, items, check_in):
    for x in items:
      if not isinstance(check_in[x], list):
        raise ValueError(x + ' must be a list.')

  def _var_to_list(self, var):
    """Wraps var in a list if it is not a list or PartitionedVariable."""
    if not (isinstance(var, list) or
            isinstance(var, var_ops.PartitionedVariable)):
      var = [var]
    return var

  def _l1_loss(self):
    """Computes the (un-normalized) l1 loss of the model."""
    with name_scope('sdca/l1_loss'):
      sums = []
      for name in ['sparse_features_weights', 'dense_features_weights']:
        for var in self._variables[name]:
          for v in self._var_to_list(var):
            weights = internal_convert_to_tensor(v)
            with ops.device(weights.device):
              sums.append(
                  math_ops.reduce_sum(
                      math_ops.abs(math_ops.cast(weights, dtypes.float64))))
      # SDCA L1 regularization cost is: l1 * sum(|weights|)
      return self._options['symmetric_l1_regularization'] * math_ops.add_n(sums)

  def _l2_loss(self, l2):
    """Computes the (un-normalized) l2 loss of the model."""
    with name_scope('sdca/l2_loss'):
      sums = []
      for name in ['sparse_features_weights', 'dense_features_weights']:
        for var in self._variables[name]:
          for v in self._var_to_list(var):
            weights = internal_convert_to_tensor(v)
            with ops.device(weights.device):
              sums.append(math_ops.reduce_sum(math_ops.square(math_ops.cast(
                  weights, dtypes.float64))))
      # SDCA L2 regularization cost is: l2 * sum(weights^2) / 2
      return l2 * math_ops.add_n(sums) / 2.0

  def _convert_n_to_tensor(self, input_list, as_ref=False):
    """Converts input list to a set of tensors."""
    # input_list can be a list of Variables (that are implicitly partitioned),
    # in which case the underlying logic in internal_convert_to_tensor will not
    # concatenate the partitions together.  This method takes care of the
    # concatenating (we only allow partitioning on the first axis).
    output_list = []
    for x in input_list:
      tensor_to_convert = x
      if isinstance(x, list) or isinstance(x, var_ops.PartitionedVariable):
        # We only allow for partitioning on the first axis.
        tensor_to_convert = array_ops.concat(x, axis=0)
      output_list.append(internal_convert_to_tensor(
          tensor_to_convert, as_ref=as_ref))
    return output_list

  def _get_first_dimension_size_statically(self, w, num_partitions):
    """Compute the static size of the first dimension for a sharded variable."""
    dim_0_size = w[0].get_shape()[0]
    for p in range(1, num_partitions):
      dim_0_size += w[p].get_shape()[0]
    return dim_0_size

  def _linear_predictions(self, examples):
    """Returns predictions of the form w*x."""
    with name_scope('sdca/prediction'):
      sparse_variables = self._convert_n_to_tensor(self._variables[
          'sparse_features_weights'])
      result_sparse = 0.0
      for sfc, sv in zip(examples['sparse_features'], sparse_variables):
        # TODO(sibyl-Aix6ihai): following does not take care of missing features.
        result_sparse += math_ops.segment_sum(
            math_ops.multiply(
                array_ops.gather(sv, sfc.feature_indices), sfc.feature_values),
            sfc.example_indices)
      dense_features = self._convert_n_to_tensor(examples['dense_features'])
      dense_variables = self._convert_n_to_tensor(self._variables[
          'dense_features_weights'])

      result_dense = 0.0
      for i in range(len(dense_variables)):
        result_dense += math_ops.matmul(dense_features[i],
                                        array_ops.expand_dims(
                                            dense_variables[i], -1))

    # Reshaping to allow shape inference at graph construction time.
    return array_ops.reshape(result_dense, [-1]) + result_sparse

  def predictions(self, examples):
    """Add operations to compute predictions by the model.

    If logistic_loss is being used, predicted probabilities are returned.
    If poisson_loss is being used, predictions are exponentiated.
    Otherwise, (raw) linear predictions (w*x) are returned.

    Args:
      examples: Examples to compute predictions on.

    Returns:
      An Operation that computes the predictions for examples.

    Raises:
      ValueError: if examples are not well defined.
    """
    self._assertSpecified(
        ['example_weights', 'sparse_features', 'dense_features'], examples)
    self._assertList(['sparse_features', 'dense_features'], examples)

    result = self._linear_predictions(examples)
    if self._options['loss_type'] == 'logistic_loss':
      # Convert logits to probability for logistic loss predictions.
      with name_scope('sdca/logistic_prediction'):
        result = math_ops.sigmoid(result)
    elif self._options['loss_type'] == 'poisson_loss':
      # Exponeniate the prediction for poisson loss predictions.
      with name_scope('sdca/poisson_prediction'):
        result = math_ops.exp(result)
    return result

  def _get_partitioned_update_ops(self,
                                  v_num,
                                  num_partitions_by_var,
                                  p_assignments_by_var,
                                  gather_ids_by_var,
                                  weights,
                                  full_update,
                                  p_assignments,
                                  num_partitions):
    """Get updates for partitioned variables."""
    num_partitions = num_partitions_by_var[v_num]
    p_assignments = p_assignments_by_var[v_num]
    gather_ids = gather_ids_by_var[v_num]
    updates = data_flow_ops.dynamic_partition(
        full_update, p_assignments, num_partitions)
    update_ops = []
    for p in range(num_partitions):
      with ops.colocate_with(weights[p]):
        result = state_ops.scatter_add(weights[p], gather_ids[p], updates[p])
      update_ops.append(result)
    return update_ops

  def minimize(self, global_step=None, name=None):
    """Add operations to train a linear model by minimizing the loss function.

    Args:
      global_step: Optional `Variable` to increment by one after the
        variables have been updated.
      name: Optional name for the returned operation.

    Returns:
      An Operation that updates the variables passed in the constructor.
    """
    # Technically, the op depends on a lot more than the variables,
    # but we'll keep the list short.
    with name_scope(name, 'sdca/minimize'):
      sparse_example_indices = []
      sparse_feature_indices = []
      sparse_features_values = []
      for sf in self._examples['sparse_features']:
        sparse_example_indices.append(sf.example_indices)
        sparse_feature_indices.append(sf.feature_indices)
        # If feature values are missing, sdca assumes a value of 1.0f.
        if sf.feature_values is not None:
          sparse_features_values.append(sf.feature_values)

      # pylint: disable=protected-access
      example_ids_hashed = gen_sdca_ops.sdca_fprint(
          internal_convert_to_tensor(self._examples['example_ids']))
      # pylint: enable=protected-access
      example_state_data = self._hashtable.lookup(example_ids_hashed)
      # Solver returns example_state_update, new delta sparse_feature_weights
      # and delta dense_feature_weights.

      sparse_weights = []
      sparse_indices = []
      # If we have partitioned variables, keep a few dictionaries of Tensors
      # around that we need for the assign_add after the op call to
      # gen_sdca_ops.sdca_optimizer().  These are keyed because we may have a
      # mix of partitioned and un-partitioned variables.
      num_partitions_by_var = {}
      p_assignments_by_var = {}
      gather_ids_by_var = {}
      for v_num, (w, i) in enumerate(
          zip(self._slots['unshrinked_sparse_features_weights'],
              sparse_feature_indices)):
        # Append the sparse_indices (in full-variable space).
        sparse_idx = math_ops.cast(
            array_ops.unique(math_ops.cast(i, dtypes.int32))[0],
            dtypes.int64)
        sparse_indices.append(sparse_idx)
        if isinstance(w, list) or isinstance(w, var_ops.PartitionedVariable):
          num_partitions = len(w)
          flat_ids = array_ops.reshape(sparse_idx, [-1])
          # We use div partitioning, which is easiest to support downstream.
          # Compute num_total_ids as the sum of dim-0 of w, then assign
          # to partitions based on a constant number of ids per partition.
          # Optimize if we already know the full shape statically.
          dim_0_size = self._get_first_dimension_size_statically(
              w, num_partitions)

          if dim_0_size.value:
            num_total_ids = constant_op.constant(dim_0_size.value,
                                                 flat_ids.dtype)
          else:
            dim_0_sizes = []
            for p in range(num_partitions):
              if w[p].get_shape()[0].value is not None:
                dim_0_sizes.append(w[p].get_shape()[0].value)
              else:
                with ops.colocate_with(w[p]):
                  dim_0_sizes.append(array_ops.shape(w[p])[0])
            num_total_ids = math_ops.reduce_sum(
                math_ops.cast(array_ops.stack(dim_0_sizes), flat_ids.dtype))
          ids_per_partition = num_total_ids // num_partitions
          extras = num_total_ids % num_partitions

          p_assignments = math_ops.maximum(
              flat_ids // (ids_per_partition + 1),
              (flat_ids - extras) // ids_per_partition)

          # Emulate a conditional using a boolean indicator tensor
          new_ids = array_ops.where(p_assignments < extras,
                                    flat_ids % (ids_per_partition + 1),
                                    (flat_ids - extras) % ids_per_partition)

          # Cast partition assignments to int32 for use in dynamic_partition.
          # There really should not be more than 2^32 partitions.
          p_assignments = math_ops.cast(p_assignments, dtypes.int32)
          # Partition list of ids based on assignments into num_partitions
          # separate lists.
          gather_ids = data_flow_ops.dynamic_partition(new_ids,
                                                       p_assignments,
                                                       num_partitions)
          # Add these into the dictionaries for use in the later update.
          num_partitions_by_var[v_num] = num_partitions
          p_assignments_by_var[v_num] = p_assignments
          gather_ids_by_var[v_num] = gather_ids

          # Gather the weights from each partition.
          partition_gathered_weights = []
          for p in range(num_partitions):
            with ops.colocate_with(w[p]):
              partition_gathered_weights.append(
                  array_ops.gather(w[p], gather_ids[p]))

          # Stitch the weights back together in the same order they were before
          # we dynamic_partitioned them.
          condition_indices = data_flow_ops.dynamic_partition(
              math_ops.range(array_ops.shape(new_ids)[0]),
              p_assignments, num_partitions)
          batch_gathered_weights = data_flow_ops.dynamic_stitch(
              condition_indices, partition_gathered_weights)
        else:
          w_as_tensor = internal_convert_to_tensor(w)
          with ops.device(w_as_tensor.device):
            batch_gathered_weights = array_ops.gather(
                w_as_tensor, sparse_idx)
        sparse_weights.append(batch_gathered_weights)

      # pylint: disable=protected-access
      if compat.forward_compatible(year=2018, month=10, day=30):
        esu, sfw, dfw = gen_sdca_ops.sdca_optimizer_v2(
            sparse_example_indices,
            sparse_feature_indices,
            sparse_features_values,
            self._convert_n_to_tensor(self._examples['dense_features']),
            internal_convert_to_tensor(self._examples['example_weights']),
            internal_convert_to_tensor(self._examples['example_labels']),
            sparse_indices,
            sparse_weights,
            self._convert_n_to_tensor(self._slots[
                'unshrinked_dense_features_weights']),
            example_state_data,
            loss_type=self._options['loss_type'],
            l1=self._options['symmetric_l1_regularization'],
            l2=self._symmetric_l2_regularization(),
            num_loss_partitions=self._num_loss_partitions(),
            num_inner_iterations=1,
            adaptive=self._adaptive())
      else:
        esu, sfw, dfw = gen_sdca_ops.sdca_optimizer(
            sparse_example_indices,
            sparse_feature_indices,
            sparse_features_values,
            self._convert_n_to_tensor(self._examples['dense_features']),
            internal_convert_to_tensor(self._examples['example_weights']),
            internal_convert_to_tensor(self._examples['example_labels']),
            sparse_indices,
            sparse_weights,
            self._convert_n_to_tensor(self._slots[
                'unshrinked_dense_features_weights']),
            example_state_data,
            loss_type=self._options['loss_type'],
            l1=self._options['symmetric_l1_regularization'],
            l2=self._symmetric_l2_regularization(),
            num_loss_partitions=self._num_loss_partitions(),
            num_inner_iterations=1,
            adaptative=self._adaptive())
      # pylint: enable=protected-access

      with ops.control_dependencies([esu]):
        update_ops = [self._hashtable.insert(example_ids_hashed, esu)]
        # Update the weights before the proximal step.
        for v_num, (w, i, u) in enumerate(
            zip(self._slots['unshrinked_sparse_features_weights'],
                sparse_indices, sfw)):
          if (isinstance(w, var_ops.PartitionedVariable) or
              isinstance(w, list)):
            update_ops += self._get_partitioned_update_ops(
                v_num, num_partitions_by_var, p_assignments_by_var,
                gather_ids_by_var, w, u, p_assignments, num_partitions)
          else:
            update_ops.append(state_ops.scatter_add(w, i, u))
        for w, u in zip(self._slots['unshrinked_dense_features_weights'], dfw):
          if (isinstance(w, var_ops.PartitionedVariable) or
              isinstance(w, list)):
            split_updates = array_ops.split(
                u, num_or_size_splits=[v.shape.as_list()[0] for v in w])
            for v, split_update in zip(w, split_updates):
              update_ops.append(state_ops.assign_add(v, split_update))
          else:
            update_ops.append(state_ops.assign_add(w, u))
      if not global_step:
        return control_flow_ops.group(*update_ops)
      with ops.control_dependencies(update_ops):
        return state_ops.assign_add(global_step, 1, name=name).op

  def update_weights(self, train_op):
    """Updates the model weights.

    This function must be called on at least one worker after `minimize`.
    In distributed training this call can be omitted on non-chief workers to
    speed up training.

    Args:
      train_op: The operation returned by the `minimize` call.

    Returns:
      An Operation that updates the model weights.
    """
    with ops.control_dependencies([train_op]):
      update_ops = []
      # Copy over unshrinked weights to user provided variables.
      for name in ['sparse_features_weights', 'dense_features_weights']:
        for var, slot_var in zip(self._variables[name],
                                 self._slots['unshrinked_' + name]):
          for v, sv in zip(self._var_to_list(var), self._var_to_list(slot_var)):
            update_ops.append(v.assign(sv))

    # Apply proximal step.
    with ops.control_dependencies(update_ops):
      update_ops = []
      for name in ['sparse_features_weights', 'dense_features_weights']:
        for var in self._variables[name]:
          for v in self._var_to_list(var):
            with ops.device(v.device):
              # pylint: disable=protected-access
              update_ops.append(
                  gen_sdca_ops.sdca_shrink_l1(
                      self._convert_n_to_tensor([v], as_ref=True),
                      l1=self._symmetric_l1_regularization(),
                      l2=self._symmetric_l2_regularization()))
      return control_flow_ops.group(*update_ops)

  def approximate_duality_gap(self):
    """Add operations to compute the approximate duality gap.

    Returns:
      An Operation that computes the approximate duality gap over all
      examples.
    """
    with name_scope('sdca/approximate_duality_gap'):
      _, values_list = self._hashtable.export_sharded()
      shard_sums = []
      for values in values_list:
        with ops.device(values.device):
          # For large tables to_double() below allocates a large temporary
          # tensor that is freed once the sum operation completes. To reduce
          # peak memory usage in cases where we have multiple large tables on a
          # single device, we serialize these operations.
          # Note that we need double precision to get accurate results.
          with ops.control_dependencies(shard_sums):
            shard_sums.append(
                math_ops.reduce_sum(math_ops.to_double(values), 0))
      summed_values = math_ops.add_n(shard_sums)

      primal_loss = summed_values[1]
      dual_loss = summed_values[2]
      example_weights = summed_values[3]
      # Note: we return NaN if there are no weights or all weights are 0, e.g.
      # if no examples have been processed
      return (primal_loss + dual_loss + self._l1_loss() +
              (2.0 * self._l2_loss(self._symmetric_l2_regularization()))
             ) / example_weights

  def unregularized_loss(self, examples):
    """Add operations to compute the loss (without the regularization loss).

    Args:
      examples: Examples to compute unregularized loss on.

    Returns:
      An Operation that computes mean (unregularized) loss for given set of
      examples.

    Raises:
      ValueError: if examples are not well defined.
    """
    self._assertSpecified([
        'example_labels', 'example_weights', 'sparse_features', 'dense_features'
    ], examples)
    self._assertList(['sparse_features', 'dense_features'], examples)
    with name_scope('sdca/unregularized_loss'):
      predictions = math_ops.cast(
          self._linear_predictions(examples), dtypes.float64)
      labels = math_ops.cast(
          internal_convert_to_tensor(examples['example_labels']),
          dtypes.float64)
      weights = math_ops.cast(
          internal_convert_to_tensor(examples['example_weights']),
          dtypes.float64)

      if self._options['loss_type'] == 'logistic_loss':
        return math_ops.reduce_sum(math_ops.multiply(
            sigmoid_cross_entropy_with_logits(labels=labels,
                                              logits=predictions),
            weights)) / math_ops.reduce_sum(weights)

      if self._options['loss_type'] == 'poisson_loss':
        return math_ops.reduce_sum(math_ops.multiply(
            log_poisson_loss(targets=labels, log_input=predictions),
            weights)) / math_ops.reduce_sum(weights)

      if self._options['loss_type'] in ['hinge_loss', 'smooth_hinge_loss']:
        # hinge_loss = max{0, 1 - y_i w*x} where y_i \in {-1, 1}. So, we need to
        # first convert 0/1 labels into -1/1 labels.
        all_ones = array_ops.ones_like(predictions)
        adjusted_labels = math_ops.subtract(2 * labels, all_ones)
        # Tensor that contains (unweighted) error (hinge loss) per
        # example.
        error = nn_ops.relu(
            math_ops.subtract(all_ones,
                              math_ops.multiply(adjusted_labels, predictions)))
        weighted_error = math_ops.multiply(error, weights)
        return math_ops.reduce_sum(weighted_error) / math_ops.reduce_sum(
            weights)

      # squared loss
      err = math_ops.subtract(labels, predictions)

      weighted_squared_err = math_ops.multiply(math_ops.square(err), weights)
      # SDCA squared loss function is sum(err^2) / (2*sum(weights))
      return (math_ops.reduce_sum(weighted_squared_err) /
              (2.0 * math_ops.reduce_sum(weights)))

  def regularized_loss(self, examples):
    """Add operations to compute the loss with regularization loss included.

    Args:
      examples: Examples to compute loss on.

    Returns:
      An Operation that computes mean (regularized) loss for given set of
      examples.
    Raises:
      ValueError: if examples are not well defined.
    """
    self._assertSpecified([
        'example_labels', 'example_weights', 'sparse_features', 'dense_features'
    ], examples)
    self._assertList(['sparse_features', 'dense_features'], examples)
    with name_scope('sdca/regularized_loss'):
      weights = internal_convert_to_tensor(examples['example_weights'])
      return ((
          self._l1_loss() +
          # Note that here we are using the raw regularization
          # (as specified by the user) and *not*
          # self._symmetric_l2_regularization().
          self._l2_loss(self._options['symmetric_l2_regularization'])) /
              math_ops.reduce_sum(math_ops.cast(weights, dtypes.float64)) +
              self.unregularized_loss(examples))