aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/learn/python/learn/utils/saved_model_export_utils_test.py
blob: 48222e9dd612fc301c933484cdd3bf4667499922 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests of utilities supporting export to SavedModel."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import tempfile
import time

from tensorflow.contrib.layers.python.layers import feature_column as fc
from tensorflow.contrib.learn.python.learn import export_strategy as export_strategy_lib
from tensorflow.contrib.learn.python.learn.estimators import constants
from tensorflow.contrib.learn.python.learn.estimators import model_fn
from tensorflow.contrib.learn.python.learn.utils import input_fn_utils
from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils
from tensorflow.core.framework import tensor_shape_pb2
from tensorflow.core.framework import types_pb2
from tensorflow.core.protobuf import meta_graph_pb2
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.platform import gfile
from tensorflow.python.platform import test
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import signature_def_utils
from tensorflow.python.util import compat


class SavedModelExportUtilsTest(test.TestCase):

  def test_build_standardized_signature_def_regression(self):
    input_tensors = {
        "input-1":
            array_ops.placeholder(
                dtypes.float32, 1, name="input-tensor-1")
    }
    output_tensors = {
        "output-1":
            array_ops.placeholder(
                dtypes.float32, 1, name="output-tensor-1")
    }
    problem_type = constants.ProblemType.LINEAR_REGRESSION
    actual_signature_def = (
        saved_model_export_utils.build_standardized_signature_def(
            input_tensors, output_tensors, problem_type))
    expected_signature_def = meta_graph_pb2.SignatureDef()
    shape = tensor_shape_pb2.TensorShapeProto(
        dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])
    dtype = types_pb2.DataType.Value("DT_FLOAT")
    expected_signature_def.inputs[
        signature_constants.REGRESS_INPUTS].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="input-tensor-1:0", dtype=dtype, tensor_shape=shape))
    expected_signature_def.outputs[
        signature_constants.REGRESS_OUTPUTS].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="output-tensor-1:0", dtype=dtype, tensor_shape=shape))

    expected_signature_def.method_name = signature_constants.REGRESS_METHOD_NAME
    self.assertEqual(actual_signature_def, expected_signature_def)

  def test_build_standardized_signature_def_classification(self):
    """Tests classification with one output tensor."""
    input_tensors = {
        "input-1":
            array_ops.placeholder(
                dtypes.float32, 1, name="input-tensor-1")
    }
    output_tensors = {
        "output-1":
            array_ops.placeholder(
                dtypes.string, 1, name="output-tensor-1")
    }
    problem_type = constants.ProblemType.CLASSIFICATION
    actual_signature_def = (
        saved_model_export_utils.build_standardized_signature_def(
            input_tensors, output_tensors, problem_type))
    expected_signature_def = meta_graph_pb2.SignatureDef()
    shape = tensor_shape_pb2.TensorShapeProto(
        dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])
    dtype_float = types_pb2.DataType.Value("DT_FLOAT")
    dtype_string = types_pb2.DataType.Value("DT_STRING")
    expected_signature_def.inputs[
        signature_constants.CLASSIFY_INPUTS].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="input-tensor-1:0", dtype=dtype_float, tensor_shape=shape))
    expected_signature_def.outputs[
        signature_constants.CLASSIFY_OUTPUT_CLASSES].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="output-tensor-1:0", dtype=dtype_string,
                tensor_shape=shape))

    expected_signature_def.method_name = (
        signature_constants.CLASSIFY_METHOD_NAME)
    self.assertEqual(actual_signature_def, expected_signature_def)

  def test_build_standardized_signature_def_classification2(self):
    """Tests multiple output tensors that include classes and probabilites."""
    input_tensors = {
        "input-1":
            array_ops.placeholder(
                dtypes.float32, 1, name="input-tensor-1")
    }
    output_tensors = {
        "classes":
            array_ops.placeholder(
                dtypes.string, 1, name="output-tensor-classes"),
        # Will be used for CLASSIFY_OUTPUT_SCORES.
        "probabilities":
            array_ops.placeholder(
                dtypes.float32, 1, name="output-tensor-proba"),
        "logits":
            array_ops.placeholder(
                dtypes.float32, 1, name="output-tensor-logits-unused"),
    }
    problem_type = constants.ProblemType.CLASSIFICATION
    actual_signature_def = (
        saved_model_export_utils.build_standardized_signature_def(
            input_tensors, output_tensors, problem_type))
    expected_signature_def = meta_graph_pb2.SignatureDef()
    shape = tensor_shape_pb2.TensorShapeProto(
        dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])
    dtype_float = types_pb2.DataType.Value("DT_FLOAT")
    dtype_string = types_pb2.DataType.Value("DT_STRING")
    expected_signature_def.inputs[
        signature_constants.CLASSIFY_INPUTS].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="input-tensor-1:0", dtype=dtype_float, tensor_shape=shape))
    expected_signature_def.outputs[
        signature_constants.CLASSIFY_OUTPUT_CLASSES].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="output-tensor-classes:0", dtype=dtype_string,
                tensor_shape=shape))
    expected_signature_def.outputs[
        signature_constants.CLASSIFY_OUTPUT_SCORES].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="output-tensor-proba:0", dtype=dtype_float,
                tensor_shape=shape))

    expected_signature_def.method_name = (
        signature_constants.CLASSIFY_METHOD_NAME)
    self.assertEqual(actual_signature_def, expected_signature_def)

  def test_build_standardized_signature_def_classification3(self):
    """Tests multiple output tensors that include classes and scores."""
    input_tensors = {
        "input-1":
            array_ops.placeholder(
                dtypes.float32, 1, name="input-tensor-1")
    }
    output_tensors = {
        "classes":
            array_ops.placeholder(
                dtypes.string, 1, name="output-tensor-classes"),
        "scores":
            array_ops.placeholder(
                dtypes.float32, 1, name="output-tensor-scores"),
        "logits":
            array_ops.placeholder(
                dtypes.float32, 1, name="output-tensor-logits-unused"),
    }
    problem_type = constants.ProblemType.CLASSIFICATION
    actual_signature_def = (
        saved_model_export_utils.build_standardized_signature_def(
            input_tensors, output_tensors, problem_type))
    expected_signature_def = meta_graph_pb2.SignatureDef()
    shape = tensor_shape_pb2.TensorShapeProto(
        dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])
    dtype_float = types_pb2.DataType.Value("DT_FLOAT")
    dtype_string = types_pb2.DataType.Value("DT_STRING")
    expected_signature_def.inputs[
        signature_constants.CLASSIFY_INPUTS].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="input-tensor-1:0", dtype=dtype_float, tensor_shape=shape))
    expected_signature_def.outputs[
        signature_constants.CLASSIFY_OUTPUT_CLASSES].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="output-tensor-classes:0", dtype=dtype_string,
                tensor_shape=shape))
    expected_signature_def.outputs[
        signature_constants.CLASSIFY_OUTPUT_SCORES].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="output-tensor-scores:0", dtype=dtype_float,
                tensor_shape=shape))

    expected_signature_def.method_name = (
        signature_constants.CLASSIFY_METHOD_NAME)
    self.assertEqual(actual_signature_def, expected_signature_def)

  def test_build_standardized_signature_def_classification4(self):
    """Tests classification without classes tensor."""
    input_tensors = {
        "input-1":
            array_ops.placeholder(
                dtypes.float32, 1, name="input-tensor-1")
    }
    output_tensors = {
        "probabilities":
            array_ops.placeholder(
                dtypes.float32, 1, name="output-tensor-proba"),
        "logits":
            array_ops.placeholder(
                dtypes.float32, 1, name="output-tensor-logits-unused"),
    }
    problem_type = constants.ProblemType.CLASSIFICATION
    actual_signature_def = (
        saved_model_export_utils.build_standardized_signature_def(
            input_tensors, output_tensors, problem_type))
    expected_signature_def = meta_graph_pb2.SignatureDef()
    shape = tensor_shape_pb2.TensorShapeProto(
        dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])
    dtype_float = types_pb2.DataType.Value("DT_FLOAT")
    expected_signature_def.inputs[
        signature_constants.CLASSIFY_INPUTS].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="input-tensor-1:0", dtype=dtype_float, tensor_shape=shape))
    expected_signature_def.outputs[
        signature_constants.CLASSIFY_OUTPUT_SCORES].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="output-tensor-proba:0", dtype=dtype_float,
                tensor_shape=shape))

    expected_signature_def.method_name = (
        signature_constants.CLASSIFY_METHOD_NAME)
    self.assertEqual(actual_signature_def, expected_signature_def)

  def test_build_standardized_signature_def_classification5(self):
    """Tests multiple output tensors that include integer classes and scores.

    Integer classes are dropped out, because Servo classification can only serve
    string classes. So, only scores are present in the signature.
    """
    input_tensors = {
        "input-1":
            array_ops.placeholder(
                dtypes.float32, 1, name="input-tensor-1")
    }
    output_tensors = {
        "classes":
            array_ops.placeholder(
                dtypes.int64, 1, name="output-tensor-classes"),
        "scores":
            array_ops.placeholder(
                dtypes.float32, 1, name="output-tensor-scores"),
        "logits":
            array_ops.placeholder(
                dtypes.float32, 1, name="output-tensor-logits-unused"),
    }
    problem_type = constants.ProblemType.CLASSIFICATION
    actual_signature_def = (
        saved_model_export_utils.build_standardized_signature_def(
            input_tensors, output_tensors, problem_type))
    expected_signature_def = meta_graph_pb2.SignatureDef()
    shape = tensor_shape_pb2.TensorShapeProto(
        dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])
    dtype_float = types_pb2.DataType.Value("DT_FLOAT")
    expected_signature_def.inputs[
        signature_constants.CLASSIFY_INPUTS].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="input-tensor-1:0", dtype=dtype_float, tensor_shape=shape))
    expected_signature_def.outputs[
        signature_constants.CLASSIFY_OUTPUT_SCORES].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="output-tensor-scores:0", dtype=dtype_float,
                tensor_shape=shape))

    expected_signature_def.method_name = (
        signature_constants.CLASSIFY_METHOD_NAME)
    self.assertEqual(actual_signature_def, expected_signature_def)

  def test_build_standardized_signature_def_classification6(self):
    """Tests multiple output tensors that with integer classes and no scores.

    Servo classification cannot serve integer classes, but no scores are
    available. So, we fall back to predict signature.
    """
    input_tensors = {
        "input-1":
            array_ops.placeholder(
                dtypes.float32, 1, name="input-tensor-1")
    }
    output_tensors = {
        "classes":
            array_ops.placeholder(
                dtypes.int64, 1, name="output-tensor-classes"),
        "logits":
            array_ops.placeholder(
                dtypes.float32, 1, name="output-tensor-logits"),
    }
    problem_type = constants.ProblemType.CLASSIFICATION
    actual_signature_def = (
        saved_model_export_utils.build_standardized_signature_def(
            input_tensors, output_tensors, problem_type))
    expected_signature_def = meta_graph_pb2.SignatureDef()
    shape = tensor_shape_pb2.TensorShapeProto(
        dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])
    dtype_int64 = types_pb2.DataType.Value("DT_INT64")
    dtype_float = types_pb2.DataType.Value("DT_FLOAT")
    expected_signature_def.inputs[
        "input-1"].CopyFrom(
            meta_graph_pb2.TensorInfo(
                name="input-tensor-1:0", dtype=dtype_float, tensor_shape=shape))
    expected_signature_def.outputs["classes"].CopyFrom(
        meta_graph_pb2.TensorInfo(
            name="output-tensor-classes:0", dtype=dtype_int64,
            tensor_shape=shape))
    expected_signature_def.outputs["logits"].CopyFrom(
        meta_graph_pb2.TensorInfo(
            name="output-tensor-logits:0", dtype=dtype_float,
            tensor_shape=shape))

    expected_signature_def.method_name = (
        signature_constants.PREDICT_METHOD_NAME)
    self.assertEqual(actual_signature_def, expected_signature_def)

  def test_get_input_alternatives(self):
    input_ops = input_fn_utils.InputFnOps("bogus features dict", None,
                                          "bogus default input dict")

    input_alternatives, _ = saved_model_export_utils.get_input_alternatives(
        input_ops)
    self.assertEqual(input_alternatives[
        saved_model_export_utils.DEFAULT_INPUT_ALTERNATIVE_KEY],
                     "bogus default input dict")
    # self.assertEqual(input_alternatives[
    #     saved_model_export_utils.FEATURES_INPUT_ALTERNATIVE_KEY],
    #                  "bogus features dict")

  def test_get_output_alternatives_explicit_default(self):
    provided_output_alternatives = {
        "head-1": (constants.ProblemType.LINEAR_REGRESSION,
                   "bogus output dict"),
        "head-2": (constants.ProblemType.CLASSIFICATION, "bogus output dict 2"),
        "head-3": (constants.ProblemType.UNSPECIFIED, "bogus output dict 3"),
    }
    model_fn_ops = model_fn.ModelFnOps(
        model_fn.ModeKeys.INFER,
        predictions={"some_output": "bogus_tensor"},
        output_alternatives=provided_output_alternatives)

    output_alternatives, _ = saved_model_export_utils.get_output_alternatives(
        model_fn_ops, "head-1")

    self.assertEqual(provided_output_alternatives, output_alternatives)

  def test_get_output_alternatives_wrong_default(self):
    provided_output_alternatives = {
        "head-1": (constants.ProblemType.LINEAR_REGRESSION,
                   "bogus output dict"),
        "head-2": (constants.ProblemType.CLASSIFICATION, "bogus output dict 2"),
        "head-3": (constants.ProblemType.UNSPECIFIED, "bogus output dict 3"),
    }
    model_fn_ops = model_fn.ModelFnOps(
        model_fn.ModeKeys.INFER,
        predictions={"some_output": "bogus_tensor"},
        output_alternatives=provided_output_alternatives)

    with self.assertRaises(ValueError) as e:
      saved_model_export_utils.get_output_alternatives(model_fn_ops, "WRONG")

    self.assertEqual("Requested default_output_alternative: WRONG, but "
                     "available output_alternatives are: ['head-1', 'head-2', "
                     "'head-3']", str(e.exception))

  def test_get_output_alternatives_single_no_default(self):
    prediction_tensor = constant_op.constant(["bogus"])
    provided_output_alternatives = {
        "head-1": (constants.ProblemType.LINEAR_REGRESSION,
                   {"output": prediction_tensor}),
    }
    model_fn_ops = model_fn.ModelFnOps(
        model_fn.ModeKeys.INFER,
        predictions=prediction_tensor,
        output_alternatives=provided_output_alternatives)

    output_alternatives, _ = saved_model_export_utils.get_output_alternatives(
        model_fn_ops)

    self.assertEqual({"head-1":
                      (constants.ProblemType.LINEAR_REGRESSION,
                       {"output": prediction_tensor})},
                     output_alternatives)

  def test_get_output_alternatives_multi_no_default(self):
    provided_output_alternatives = {
        "head-1": (constants.ProblemType.LINEAR_REGRESSION,
                   "bogus output dict"),
        "head-2": (constants.ProblemType.CLASSIFICATION, "bogus output dict 2"),
        "head-3": (constants.ProblemType.UNSPECIFIED, "bogus output dict 3"),
    }
    model_fn_ops = model_fn.ModelFnOps(
        model_fn.ModeKeys.INFER,
        predictions={"some_output": "bogus_tensor"},
        output_alternatives=provided_output_alternatives)

    with self.assertRaises(ValueError) as e:
      saved_model_export_utils.get_output_alternatives(model_fn_ops)

    self.assertEqual("Please specify a default_output_alternative.  Available "
                     "output_alternatives are: ['head-1', 'head-2', 'head-3']",
                     str(e.exception))

  def test_get_output_alternatives_none_provided(self):
    prediction_tensor = constant_op.constant(["bogus"])
    model_fn_ops = model_fn.ModelFnOps(
        model_fn.ModeKeys.INFER,
        predictions={"some_output": prediction_tensor},
        output_alternatives=None)

    output_alternatives, _ = saved_model_export_utils.get_output_alternatives(
        model_fn_ops)

    self.assertEqual(
        {"default_output_alternative": (constants.ProblemType.UNSPECIFIED, {
            "some_output": prediction_tensor})},
        output_alternatives)

  def test_get_output_alternatives_empty_provided_with_default(self):
    prediction_tensor = constant_op.constant(["bogus"])
    model_fn_ops = model_fn.ModelFnOps(
        model_fn.ModeKeys.INFER,
        predictions={"some_output": prediction_tensor},
        output_alternatives={})

    with self.assertRaises(ValueError) as e:
      saved_model_export_utils.get_output_alternatives(model_fn_ops, "WRONG")

    self.assertEqual("Requested default_output_alternative: WRONG, but "
                     "available output_alternatives are: []", str(e.exception))

  def test_get_output_alternatives_empty_provided_no_default(self):
    prediction_tensor = constant_op.constant(["bogus"])
    model_fn_ops = model_fn.ModelFnOps(
        model_fn.ModeKeys.INFER,
        predictions={"some_output": prediction_tensor},
        output_alternatives={})

    output_alternatives, _ = saved_model_export_utils.get_output_alternatives(
        model_fn_ops)

    self.assertEqual(
        {"default_output_alternative": (constants.ProblemType.UNSPECIFIED, {
            "some_output": prediction_tensor})},
        output_alternatives)

  def test_get_output_alternatives_implicit_single(self):
    prediction_tensor = constant_op.constant(["bogus"])
    model_fn_ops = model_fn.ModelFnOps(
        model_fn.ModeKeys.INFER,
        predictions=prediction_tensor,
        output_alternatives=None)

    output_alternatives, _ = saved_model_export_utils.get_output_alternatives(
        model_fn_ops)
    self.assertEqual({
        "default_output_alternative": (constants.ProblemType.UNSPECIFIED, {
            "output": prediction_tensor
        })
    }, output_alternatives)

  def test_build_all_signature_defs(self):
    input_features = constant_op.constant(["10"])
    input_example = constant_op.constant(["11"])
    input_ops = input_fn_utils.InputFnOps({
        "features": input_features
    }, None, {"default input": input_example})
    input_alternatives, _ = (
        saved_model_export_utils.get_input_alternatives(input_ops))
    output_1 = constant_op.constant(["1"])
    output_2 = constant_op.constant(["2"])
    output_3 = constant_op.constant(["3"])
    provided_output_alternatives = {
        "head-1": (constants.ProblemType.LINEAR_REGRESSION, {
            "some_output_1": output_1
        }),
        "head-2": (constants.ProblemType.CLASSIFICATION, {
            "some_output_2": output_2
        }),
        "head-3": (constants.ProblemType.UNSPECIFIED, {
            "some_output_3": output_3
        }),
    }
    model_fn_ops = model_fn.ModelFnOps(
        model_fn.ModeKeys.INFER,
        predictions={"some_output": constant_op.constant(["4"])},
        output_alternatives=provided_output_alternatives)
    output_alternatives, _ = (saved_model_export_utils.get_output_alternatives(
        model_fn_ops, "head-1"))

    signature_defs = saved_model_export_utils.build_all_signature_defs(
        input_alternatives, output_alternatives, "head-1")

    expected_signature_defs = {
        "serving_default":
            signature_def_utils.regression_signature_def(input_example,
                                                         output_1),
        "default_input_alternative:head-1":
            signature_def_utils.regression_signature_def(input_example,
                                                         output_1),
        "default_input_alternative:head-2":
            signature_def_utils.classification_signature_def(input_example,
                                                             output_2, None),
        "default_input_alternative:head-3":
            signature_def_utils.predict_signature_def({
                "default input": input_example
            }, {"some_output_3": output_3}),
        # "features_input_alternative:head-1":
        #     signature_def_utils.regression_signature_def(input_features,
        #                                                  output_1),
        # "features_input_alternative:head-2":
        #     signature_def_utils.classification_signature_def(input_features,
        #                                                      output_2, None),
        # "features_input_alternative:head-3":
        #     signature_def_utils.predict_signature_def({
        #         "input": input_features
        #     }, {"output": output_3}),
    }

    self.assertDictEqual(expected_signature_defs, signature_defs)

  def test_build_all_signature_defs_legacy_input_fn_not_supported(self):
    """Tests that legacy input_fn returning (features, labels) raises error.

    serving_input_fn must return InputFnOps including a default input
    alternative.
    """
    input_features = constant_op.constant(["10"])
    input_ops = ({"features": input_features}, None)
    input_alternatives, _ = (
        saved_model_export_utils.get_input_alternatives(input_ops))
    output_1 = constant_op.constant(["1"])
    output_2 = constant_op.constant(["2"])
    output_3 = constant_op.constant(["3"])
    provided_output_alternatives = {
        "head-1": (constants.ProblemType.LINEAR_REGRESSION, {
            "some_output_1": output_1
        }),
        "head-2": (constants.ProblemType.CLASSIFICATION, {
            "some_output_2": output_2
        }),
        "head-3": (constants.ProblemType.UNSPECIFIED, {
            "some_output_3": output_3
        }),
    }
    model_fn_ops = model_fn.ModelFnOps(
        model_fn.ModeKeys.INFER,
        predictions={"some_output": constant_op.constant(["4"])},
        output_alternatives=provided_output_alternatives)
    output_alternatives, _ = (saved_model_export_utils.get_output_alternatives(
        model_fn_ops, "head-1"))

    with self.assertRaisesRegexp(
        ValueError, "A default input_alternative must be provided"):
      saved_model_export_utils.build_all_signature_defs(
          input_alternatives, output_alternatives, "head-1")

  def test_get_timestamped_export_dir(self):
    export_dir_base = tempfile.mkdtemp() + "export/"
    export_dir_1 = saved_model_export_utils.get_timestamped_export_dir(
        export_dir_base)
    time.sleep(2)
    export_dir_2 = saved_model_export_utils.get_timestamped_export_dir(
        export_dir_base)
    time.sleep(2)
    export_dir_3 = saved_model_export_utils.get_timestamped_export_dir(
        export_dir_base)

    # Export directories should be named using a timestamp that is seconds
    # since epoch.  Such a timestamp is 10 digits long.
    time_1 = os.path.basename(export_dir_1)
    self.assertEqual(10, len(time_1))
    time_2 = os.path.basename(export_dir_2)
    self.assertEqual(10, len(time_2))
    time_3 = os.path.basename(export_dir_3)
    self.assertEqual(10, len(time_3))

    self.assertTrue(int(time_1) < int(time_2))
    self.assertTrue(int(time_2) < int(time_3))

  def test_garbage_collect_exports(self):
    export_dir_base = tempfile.mkdtemp() + "export/"
    gfile.MkDir(export_dir_base)
    export_dir_1 = _create_test_export_dir(export_dir_base)
    export_dir_2 = _create_test_export_dir(export_dir_base)
    export_dir_3 = _create_test_export_dir(export_dir_base)
    export_dir_4 = _create_test_export_dir(export_dir_base)

    self.assertTrue(gfile.Exists(export_dir_1))
    self.assertTrue(gfile.Exists(export_dir_2))
    self.assertTrue(gfile.Exists(export_dir_3))
    self.assertTrue(gfile.Exists(export_dir_4))

    # Garbage collect all but the most recent 2 exports,
    # where recency is determined based on the timestamp directory names.
    saved_model_export_utils.garbage_collect_exports(export_dir_base, 2)

    self.assertFalse(gfile.Exists(export_dir_1))
    self.assertFalse(gfile.Exists(export_dir_2))
    self.assertTrue(gfile.Exists(export_dir_3))
    self.assertTrue(gfile.Exists(export_dir_4))

  def test_get_most_recent_export(self):
    export_dir_base = tempfile.mkdtemp() + "export/"
    gfile.MkDir(export_dir_base)
    _create_test_export_dir(export_dir_base)
    _create_test_export_dir(export_dir_base)
    _create_test_export_dir(export_dir_base)
    export_dir_4 = _create_test_export_dir(export_dir_base)

    (most_recent_export_dir, most_recent_export_version) = (
        saved_model_export_utils.get_most_recent_export(export_dir_base))

    self.assertEqual(compat.as_bytes(export_dir_4),
                     compat.as_bytes(most_recent_export_dir))
    self.assertEqual(compat.as_bytes(export_dir_4),
                     os.path.join(compat.as_bytes(export_dir_base),
                                  compat.as_bytes(
                                      str(most_recent_export_version))))

  def test_make_export_strategy(self):
    """Only tests that an ExportStrategy instance is created."""
    def _serving_input_fn():
      return array_ops.constant([1]), None
    export_strategy = saved_model_export_utils.make_export_strategy(
        serving_input_fn=_serving_input_fn,
        default_output_alternative_key="default",
        assets_extra={"from/path": "to/path"},
        as_text=False,
        exports_to_keep=5)
    self.assertTrue(
        isinstance(export_strategy, export_strategy_lib.ExportStrategy))

  def test_make_parsing_export_strategy(self):
    """Only tests that an ExportStrategy instance is created."""
    sparse_col = fc.sparse_column_with_hash_bucket(
        "sparse_column", hash_bucket_size=100)
    embedding_col = fc.embedding_column(
        fc.sparse_column_with_hash_bucket(
            "sparse_column_for_embedding", hash_bucket_size=10),
        dimension=4)
    real_valued_col1 = fc.real_valued_column("real_valued_column1")
    bucketized_col1 = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization1"), [0, 4])
    feature_columns = [sparse_col, embedding_col, real_valued_col1,
                       bucketized_col1]

    export_strategy = saved_model_export_utils.make_parsing_export_strategy(
        feature_columns=feature_columns)
    self.assertTrue(
        isinstance(export_strategy, export_strategy_lib.ExportStrategy))


def _create_test_export_dir(export_dir_base):
  export_dir = saved_model_export_utils.get_timestamped_export_dir(
      export_dir_base)
  gfile.MkDir(export_dir)
  time.sleep(2)
  return export_dir


if __name__ == "__main__":
  test.main()