aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py
blob: f472034225f20220e29daa35e52a53537682a27c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""TensorFlow estimators for Linear and DNN joined training models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import re
import six

from tensorflow.contrib import layers
from tensorflow.contrib.framework import deprecated
from tensorflow.contrib.framework import deprecated_arg_values
from tensorflow.contrib.framework.python.ops import variables as contrib_variables
from tensorflow.contrib.layers.python.layers import feature_column as feature_column_lib
from tensorflow.contrib.layers.python.layers import optimizers
from tensorflow.contrib.learn.python.learn import metric_spec
from tensorflow.contrib.learn.python.learn.estimators import estimator
from tensorflow.contrib.learn.python.learn.estimators import head as head_lib
from tensorflow.contrib.learn.python.learn.estimators import model_fn
from tensorflow.contrib.learn.python.learn.estimators import prediction_key
from tensorflow.contrib.learn.python.learn.utils import export
from tensorflow.python.framework import ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import logging_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import partitioned_variables
from tensorflow.python.ops import variable_scope


_CENTERED_BIAS_WEIGHT = "centered_bias_weight"

# The default learning rates are a historical artifact of the initial
# implementation, but seem a reasonable choice.
_DNN_LEARNING_RATE = 0.05
_LINEAR_LEARNING_RATE = 0.2


def _as_iterable(preds, output):
  for pred in preds:
    yield pred[output]


def _get_feature_dict(features):
  if isinstance(features, dict):
    return features
  return {"": features}


def _get_optimizer(optimizer):
  if callable(optimizer):
    return optimizer()
  else:
    return optimizer


def _linear_learning_rate(num_linear_feature_columns):
  """Returns the default learning rate of the linear model.

  The calculation is a historical artifact of this initial implementation, but
  has proven a reasonable choice.

  Args:
    num_linear_feature_columns: The number of feature columns of the linear
      model.

  Returns:
    A float.
  """
  default_learning_rate = 1. / math.sqrt(num_linear_feature_columns)
  return min(_LINEAR_LEARNING_RATE, default_learning_rate)


def _add_hidden_layer_summary(value, tag):
  logging_ops.scalar_summary("%s/fraction_of_zero_values" % tag,
                             nn.zero_fraction(value))
  logging_ops.histogram_summary("%s/activation" % tag, value)


def _get_embedding_variable(column, collection_key, input_layer_scope):
  return ops.get_collection(collection_key,
                            input_layer_scope + "/" + column.name)


def _extract_embedding_lr_multipliers(embedding_lr_multipliers, collection_key,
                                      input_layer_scope):
  """Converts embedding lr multipliers to variable based gradient multiplier."""
  if not embedding_lr_multipliers:
    return None
  gradient_multipliers = {}
  for column, lr_mult in embedding_lr_multipliers.items():
    if not isinstance(column, feature_column_lib._EmbeddingColumn):  # pylint: disable=protected-access
      raise ValueError(
          "learning rate multipler can only be defined for embedding columns. "
          "It is defined for {}".format(column))
    embedding = _get_embedding_variable(
        column, collection_key, input_layer_scope)
    if not embedding:
      raise ValueError("Couldn't find a variable for column {}".format(column))
    for v in embedding:
      gradient_multipliers[v] = lr_mult
  return gradient_multipliers


def _dnn_linear_combined_model_fn(features, labels, mode, params, config=None):
  """Deep Neural Net and Linear combined model_fn.

  Args:
    features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`).
    labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype
      `int32` or `int64` in the range `[0, n_classes)`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    params: A dict of hyperparameters.
      The following hyperparameters are expected:
      * head: A `Head` instance.
      * linear_feature_columns: An iterable containing all the feature columns
          used by the Linear model.
      * linear_optimizer: string, `Optimizer` object, or callable that defines
          the optimizer to use for training the Linear model. Defaults to the
          Ftrl optimizer.
      * joint_linear_weights: If True a single (possibly partitioned) variable
          will be used to store the linear model weights. It's faster, but
          requires all columns are sparse and have the 'sum' combiner.
      * dnn_feature_columns: An iterable containing all the feature columns used
          by the DNN model.
      * dnn_optimizer: string, `Optimizer` object, or callable that defines the
          optimizer to use for training the DNN model. Defaults to the Adagrad
          optimizer.
      * dnn_hidden_units: List of hidden units per DNN layer.
      * dnn_activation_fn: Activation function applied to each DNN layer. If
          `None`, will use `tf.nn.relu`.
      * dnn_dropout: When not `None`, the probability we will drop out a given
          DNN coordinate.
      * gradient_clip_norm: A float > 0. If provided, gradients are
          clipped to their global norm with this clipping ratio.
      * num_ps_replicas: The number of parameter server replicas.
      * embedding_lr_multipliers: Optional. A dictionary from
          `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to
          multiply with learning rate for the embedding variables.
      * input_layer_min_slice_size: Optional. The min slice size of input layer
          partitions. If not provided, will use the default of 64M.
    config: `RunConfig` object to configure the runtime settings.

  Returns:
    `ModelFnOps`

  Raises:
    ValueError: If both `linear_feature_columns` and `dnn_features_columns`
      are empty at the same time.
  """
  head = params["head"]
  linear_feature_columns = params.get("linear_feature_columns")
  linear_optimizer = params.get("linear_optimizer") or "Ftrl"
  joint_linear_weights = params.get("joint_linear_weights")
  dnn_feature_columns = params.get("dnn_feature_columns")
  dnn_optimizer = params.get("dnn_optimizer") or "Adagrad"
  dnn_hidden_units = params.get("dnn_hidden_units")
  dnn_activation_fn = params.get("dnn_activation_fn") or nn.relu
  dnn_dropout = params.get("dnn_dropout")
  gradient_clip_norm = params.get("gradient_clip_norm")
  input_layer_min_slice_size = (
      params.get("input_layer_min_slice_size") or 64 << 20)
  num_ps_replicas = config.num_ps_replicas if config else 0
  embedding_lr_multipliers = params.get("embedding_lr_multipliers", {})

  if not linear_feature_columns and not dnn_feature_columns:
    raise ValueError(
        "Either linear_feature_columns or dnn_feature_columns must be defined.")

  features = _get_feature_dict(features)

  # Build DNN Logits.
  dnn_parent_scope = "dnn"

  if not dnn_feature_columns:
    dnn_logits = None
  else:
    if not dnn_hidden_units:
      raise ValueError(
          "dnn_hidden_units must be defined when dnn_feature_columns is specified.")
    dnn_partitioner = (
        partitioned_variables.min_max_variable_partitioner(
            max_partitions=num_ps_replicas))
    with variable_scope.variable_scope(
        dnn_parent_scope,
        values=tuple(six.itervalues(features)),
        partitioner=dnn_partitioner):
      input_layer_partitioner = (
          partitioned_variables.min_max_variable_partitioner(
              max_partitions=num_ps_replicas,
              min_slice_size=input_layer_min_slice_size))
      with variable_scope.variable_scope(
          "input_from_feature_columns",
          values=tuple(six.itervalues(features)),
          partitioner=input_layer_partitioner) as dnn_input_scope:
        net = layers.input_from_feature_columns(
            columns_to_tensors=features,
            feature_columns=dnn_feature_columns,
            weight_collections=[dnn_parent_scope],
            scope=dnn_input_scope)

      for layer_id, num_hidden_units in enumerate(dnn_hidden_units):
        with variable_scope.variable_scope(
            "hiddenlayer_%d" % layer_id,
            values=(net,)) as dnn_hidden_layer_scope:
          net = layers.fully_connected(
              net,
              num_hidden_units,
              activation_fn=dnn_activation_fn,
              variables_collections=[dnn_parent_scope],
              scope=dnn_hidden_layer_scope)
          if dnn_dropout is not None and mode == model_fn.ModeKeys.TRAIN:
            net = layers.dropout(
                net,
                keep_prob=(1.0 - dnn_dropout))
        # TODO(b/31209633): Consider adding summary before dropout.
        _add_hidden_layer_summary(net, dnn_hidden_layer_scope.name)

      with variable_scope.variable_scope(
          "logits",
          values=(net,)) as dnn_logits_scope:
        dnn_logits = layers.fully_connected(
            net,
            head.logits_dimension,
            activation_fn=None,
            variables_collections=[dnn_parent_scope],
            scope=dnn_logits_scope)
      _add_hidden_layer_summary(dnn_logits, dnn_logits_scope.name)

  # Build Linear logits.
  linear_parent_scope = "linear"

  if not linear_feature_columns:
    linear_logits = None
  else:
    linear_partitioner = partitioned_variables.min_max_variable_partitioner(
        max_partitions=num_ps_replicas,
        min_slice_size=64 << 20)
    with variable_scope.variable_scope(
        linear_parent_scope,
        values=tuple(six.itervalues(features)),
        partitioner=linear_partitioner) as scope:
      if joint_linear_weights:
        linear_logits, _, _ = layers.joint_weighted_sum_from_feature_columns(
            columns_to_tensors=features,
            feature_columns=linear_feature_columns,
            num_outputs=head.logits_dimension,
            weight_collections=[linear_parent_scope],
            scope=scope)
      else:
        linear_logits, _, _ = layers.weighted_sum_from_feature_columns(
            columns_to_tensors=features,
            feature_columns=linear_feature_columns,
            num_outputs=head.logits_dimension,
            weight_collections=[linear_parent_scope],
            scope=scope)

  # Combine logits and build full model.
  if dnn_logits is not None and linear_logits is not None:
    logits = dnn_logits + linear_logits
  elif dnn_logits is not None:
    logits = dnn_logits
  else:
    logits = linear_logits

  def _make_training_op(training_loss):
    """Training op for the DNN linear combined model."""
    train_ops = []
    if dnn_logits is not None:
      train_ops.append(
          optimizers.optimize_loss(
              loss=training_loss,
              global_step=contrib_variables.get_global_step(),
              learning_rate=_DNN_LEARNING_RATE,
              optimizer=_get_optimizer(dnn_optimizer),
              gradient_multipliers=_extract_embedding_lr_multipliers(  # pylint: disable=protected-access
                  embedding_lr_multipliers, dnn_parent_scope,
                  dnn_input_scope.name),
              clip_gradients=gradient_clip_norm,
              variables=ops.get_collection(dnn_parent_scope),
              name=dnn_parent_scope,
              # Empty summaries, because head already logs "loss" summary.
              summaries=[]))
    if linear_logits is not None:
      train_ops.append(
          optimizers.optimize_loss(
              loss=training_loss,
              global_step=contrib_variables.get_global_step(),
              learning_rate=_linear_learning_rate(len(linear_feature_columns)),
              optimizer=_get_optimizer(linear_optimizer),
              clip_gradients=gradient_clip_norm,
              variables=ops.get_collection(linear_parent_scope),
              name=linear_parent_scope,
              # Empty summaries, because head already logs "loss" summary.
              summaries=[]))

    return control_flow_ops.group(*train_ops)

  return head.create_model_fn_ops(
      features=features,
      mode=mode,
      labels=labels,
      train_op_fn=_make_training_op,
      logits=logits)


class _DNNLinearCombinedEstimator(estimator.Estimator):
  """An estimator for TensorFlow Linear and DNN joined training models.

    Input of `fit`, `train`, and `evaluate` should have following features,
      otherwise there will be a `KeyError`:
        if `weight_column_name` is not `None`, a feature with
          `key=weight_column_name` whose value is a `Tensor`.
        for each `column` in `dnn_feature_columns` + `linear_feature_columns`:
        - if `column` is a `SparseColumn`, a feature with `key=column.name`
          whose `value` is a `SparseTensor`.
        - if `column` is a `WeightedSparseColumn`, two features: the first with
          `key` the id column name, the second with `key` the weight column
          name. Both features' `value` must be a `SparseTensor`.
        - if `column` is a `RealValuedColumn, a feature with `key=column.name`
          whose `value` is a `Tensor`.
  """

  def __init__(self,  # _joint_linear_weights pylint: disable=invalid-name
               head,
               model_dir=None,
               linear_feature_columns=None,
               linear_optimizer=None,
               _joint_linear_weights=False,
               dnn_feature_columns=None,
               dnn_optimizer=None,
               dnn_hidden_units=None,
               dnn_activation_fn=None,
               dnn_dropout=None,
               gradient_clip_norm=None,
               config=None,
               feature_engineering_fn=None,
               embedding_lr_multipliers=None):
    """Initializes a _DNNLinearCombinedEstimator instance.

    Args:
      head: A _Head object.
      model_dir: Directory to save model parameters, graph and etc. This can
        also be used to load checkpoints from the directory into a estimator
        to continue training a previously saved model.
      linear_feature_columns: An iterable containing all the feature columns
        used by linear part of the model. All items in the set should be
        instances of classes derived from `FeatureColumn`.
      linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to
        the linear part of the model. If `None`, will use a FTRL optimizer.
      _joint_linear_weights: If True will use a single (possibly partitioned)
        variable to store all weights for the linear model. More efficient if
        there are many columns, however requires all columns are sparse and
        have the 'sum' combiner.
      dnn_feature_columns: An iterable containing all the feature columns used
        by deep part of the model. All items in the set should be instances of
        classes derived from `FeatureColumn`.
      dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to
        the deep part of the model. If `None`, will use an Adagrad optimizer.
      dnn_hidden_units: List of hidden units per layer. All layers are fully
        connected.
      dnn_activation_fn: Activation function applied to each layer. If `None`,
        will use `tf.nn.relu`.
      dnn_dropout: When not None, the probability we will drop out
        a given coordinate.
      gradient_clip_norm: A float > 0. If provided, gradients are clipped
        to their global norm with this clipping ratio. See
        tf.clip_by_global_norm for more details.
      config: RunConfig object to configure the runtime settings.
      feature_engineering_fn: Feature engineering function. Takes features and
                        labels which are the output of `input_fn` and
                        returns features and labels which will be fed
                        into the model.
      embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to
          a `float` multiplier. Multiplier will be used to multiply with
          learning rate for the embedding variables.

    Raises:
      ValueError: If both linear_feature_columns and dnn_features_columns are
        empty at the same time.
    """
    linear_feature_columns = tuple(linear_feature_columns or [])
    dnn_feature_columns = tuple(dnn_feature_columns or [])
    if not linear_feature_columns + dnn_feature_columns:
      raise ValueError("Either linear_feature_columns or dnn_feature_columns "
                       "must be defined.")
    super(_DNNLinearCombinedEstimator, self).__init__(
        model_fn=_dnn_linear_combined_model_fn,
        model_dir=model_dir,
        config=config,
        params={
            "head": head,
            "linear_feature_columns": linear_feature_columns,
            "linear_optimizer": linear_optimizer,
            "joint_linear_weights": _joint_linear_weights,
            "dnn_feature_columns": dnn_feature_columns,
            "dnn_optimizer": dnn_optimizer,
            "dnn_hidden_units": dnn_hidden_units,
            "dnn_activation_fn": dnn_activation_fn,
            "dnn_dropout": dnn_dropout,
            "gradient_clip_norm": gradient_clip_norm,
            "embedding_lr_multipliers": embedding_lr_multipliers,
        },
        feature_engineering_fn=feature_engineering_fn)


class DNNLinearCombinedClassifier(estimator.Estimator):
  """A classifier for TensorFlow Linear and DNN joined training models.

  Example:

  ```python
  sparse_feature_a = sparse_column_with_hash_bucket(...)
  sparse_feature_b = sparse_column_with_hash_bucket(...)

  sparse_feature_a_x_sparse_feature_b = crossed_column(...)

  sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a,
                                          ...)
  sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b,
                                          ...)

  estimator = DNNLinearCombinedClassifier(
      # common settings
      n_classes=n_classes,
      weight_column_name=weight_column_name,
      # wide settings
      linear_feature_columns=[sparse_feature_a_x_sparse_feature_b],
      linear_optimizer=tf.train.FtrlOptimizer(...),
      # deep settings
      dnn_feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb],
      dnn_hidden_units=[1000, 500, 100],
      dnn_optimizer=tf.train.AdagradOptimizer(...))

  # Input builders
  def input_fn_train: # returns x, y (where y represents label's class index).
    ...
  def input_fn_eval: # returns x, y (where y represents label's class index).
    ...
  estimator.fit(input_fn=input_fn_train)
  estimator.evaluate(input_fn=input_fn_eval)
  estimator.predict(x=x) # returns predicted labels (i.e. label's class index).
  ```

  Input of `fit` and `evaluate` should have following features,
    otherwise there will be a `KeyError`:
      if `weight_column_name` is not `None`, a feature with
        `key=weight_column_name` whose value is a `Tensor`.
      for each `column` in `dnn_feature_columns` + `linear_feature_columns`:
      - if `column` is a `SparseColumn`, a feature with `key=column.name`
        whose `value` is a `SparseTensor`.
      - if `column` is a `WeightedSparseColumn`, two features: the first with
        `key` the id column name, the second with `key` the weight column name.
        Both features' `value` must be a `SparseTensor`.
      - if `column` is a `RealValuedColumn, a feature with `key=column.name`
        whose `value` is a `Tensor`.
  """

  def __init__(self,  # _joint_linear_weights pylint: disable=invalid-name
               model_dir=None,
               n_classes=2,
               weight_column_name=None,
               linear_feature_columns=None,
               linear_optimizer=None,
               _joint_linear_weights=False,
               dnn_feature_columns=None,
               dnn_optimizer=None,
               dnn_hidden_units=None,
               dnn_activation_fn=nn.relu,
               dnn_dropout=None,
               gradient_clip_norm=None,
               enable_centered_bias=False,
               config=None,
               feature_engineering_fn=None,
               embedding_lr_multipliers=None,
               input_layer_min_slice_size=None):
    """Constructs a DNNLinearCombinedClassifier instance.

    Args:
      model_dir: Directory to save model parameters, graph and etc. This can
        also be used to load checkpoints from the directory into a estimator
        to continue training a previously saved model.
      n_classes: number of label classes. Default is binary classification.
        Note that class labels are integers representing the class index (i.e.
        values from 0 to n_classes-1). For arbitrary label values (e.g. string
        labels), convert to class indices first.
      weight_column_name: A string defining feature column name representing
        weights. It is used to down weight or boost examples during training.
        It will be multiplied by the loss of the example.
      linear_feature_columns: An iterable containing all the feature columns
        used by linear part of the model. All items in the set must be
        instances of classes derived from `FeatureColumn`.
      linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to
        the linear part of the model. If `None`, will use a FTRL optimizer.
      _joint_linear_weights: If True a single (possibly partitioned) variable
        will be used to store the linear model weights. It's faster, but
        requires all columns are sparse and have the 'sum' combiner.
      dnn_feature_columns: An iterable containing all the feature columns used
        by deep part of the model. All items in the set must be instances of
        classes derived from `FeatureColumn`.
      dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to
        the deep part of the model. If `None`, will use an Adagrad optimizer.
      dnn_hidden_units: List of hidden units per layer. All layers are fully
        connected.
      dnn_activation_fn: Activation function applied to each layer. If `None`,
        will use `tf.nn.relu`.
      dnn_dropout: When not None, the probability we will drop out
        a given coordinate.
      gradient_clip_norm: A float > 0. If provided, gradients are clipped
        to their global norm with this clipping ratio. See
        tf.clip_by_global_norm for more details.
      enable_centered_bias: A bool. If True, estimator will learn a centered
        bias variable for each class. Rest of the model structure learns the
        residual after centered bias.
      config: RunConfig object to configure the runtime settings.
      feature_engineering_fn: Feature engineering function. Takes features and
                        labels which are the output of `input_fn` and
                        returns features and labels which will be fed
                        into the model.
      embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to
          a `float` multiplier. Multiplier will be used to multiply with
          learning rate for the embedding variables.
      input_layer_min_slice_size: Optional. The min slice size of input layer
          partitions. If not provided, will use the default of 64M.

    Raises:
      ValueError: If `n_classes` < 2.
      ValueError: If both `linear_feature_columns` and `dnn_features_columns`
        are empty at the same time.
    """
    if n_classes < 2:
      raise ValueError("n_classes should be greater than 1. Given: {}".format(
          n_classes))
    self._linear_optimizer = linear_optimizer or "Ftrl"
    linear_feature_columns = tuple(linear_feature_columns or [])
    dnn_feature_columns = tuple(dnn_feature_columns or [])
    self._feature_columns = linear_feature_columns + dnn_feature_columns
    if not self._feature_columns:
      raise ValueError("Either linear_feature_columns or dnn_feature_columns "
                       "must be defined.")
    self._dnn_hidden_units = dnn_hidden_units
    self._enable_centered_bias = enable_centered_bias
    head = head_lib._multi_class_head(  # pylint: disable=protected-access
        n_classes=n_classes,
        weight_column_name=weight_column_name,
        enable_centered_bias=enable_centered_bias)
    super(DNNLinearCombinedClassifier, self).__init__(
        model_fn=_dnn_linear_combined_model_fn,
        model_dir=model_dir,
        config=config,
        params={
            "head": head,
            "linear_feature_columns": linear_feature_columns,
            "linear_optimizer": self._linear_optimizer,
            "joint_linear_weights": _joint_linear_weights,
            "dnn_feature_columns": dnn_feature_columns,
            "dnn_optimizer": dnn_optimizer,
            "dnn_hidden_units": dnn_hidden_units,
            "dnn_activation_fn": dnn_activation_fn,
            "dnn_dropout": dnn_dropout,
            "gradient_clip_norm": gradient_clip_norm,
            "embedding_lr_multipliers": embedding_lr_multipliers,
            "input_layer_min_slice_size": input_layer_min_slice_size,
        },
        feature_engineering_fn=feature_engineering_fn)

  @deprecated_arg_values(
      estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS,
      as_iterable=False)
  @deprecated_arg_values(
      "2017-03-01",
      "Please switch to predict_classes, or set `outputs` argument.",
      outputs=None)
  def predict(self, x=None, input_fn=None, batch_size=None, outputs=None,
              as_iterable=True):
    """Returns predictions for given features.

    By default, returns predicted classes. But this default will be dropped
    soon. Users should either pass `outputs`, or call `predict_classes` method.

    Args:
      x: features.
      input_fn: Input function. If set, x must be None.
      batch_size: Override default batch size.
      outputs: list of `str`, name of the output to predict.
        If `None`, returns classes.
      as_iterable: If True, return an iterable which keeps yielding predictions
        for each example until inputs are exhausted. Note: The inputs must
        terminate if you want the iterable to terminate (e.g. be sure to pass
        num_epochs=1 if you are using something like read_batch_features).

    Returns:
      Numpy array of predicted classes with shape [batch_size] (or an iterable
      of predicted classes if as_iterable is True). Each predicted class is
      represented by its class index (i.e. integer from 0 to n_classes-1).
      If `outputs` is set, returns a dict of predictions.
    """
    if not outputs:
      return self.predict_classes(
          x=x,
          input_fn=input_fn,
          batch_size=batch_size,
          as_iterable=as_iterable)
    return super(DNNLinearCombinedClassifier, self).predict(
        x=x,
        input_fn=input_fn,
        batch_size=batch_size,
        outputs=outputs,
        as_iterable=as_iterable)

  @deprecated_arg_values(
      estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS,
      as_iterable=False)
  def predict_classes(self, x=None, input_fn=None, batch_size=None,
                      as_iterable=True):
    """Returns predicted classes for given features.

    Args:
      x: features.
      input_fn: Input function. If set, x must be None.
      batch_size: Override default batch size.
      as_iterable: If True, return an iterable which keeps yielding predictions
        for each example until inputs are exhausted. Note: The inputs must
        terminate if you want the iterable to terminate (e.g. be sure to pass
        num_epochs=1 if you are using something like read_batch_features).

    Returns:
      Numpy array of predicted classes with shape [batch_size] (or an iterable
      of predicted classes if as_iterable is True). Each predicted class is
      represented by its class index (i.e. integer from 0 to n_classes-1).
    """
    key = prediction_key.PredictionKey.CLASSES
    preds = super(DNNLinearCombinedClassifier, self).predict(
        x=x,
        input_fn=input_fn,
        batch_size=batch_size,
        outputs=[key],
        as_iterable=as_iterable)
    if as_iterable:
      return _as_iterable(preds, output=key)
    return preds[key].reshape(-1)

  @deprecated_arg_values(
      estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS,
      as_iterable=False)
  def predict_proba(
      self, x=None, input_fn=None, batch_size=None, as_iterable=True):
    """Returns prediction probabilities for given features.

    Args:
      x: features.
      input_fn: Input function. If set, x and y must be None.
      batch_size: Override default batch size.
      as_iterable: If True, return an iterable which keeps yielding predictions
        for each example until inputs are exhausted. Note: The inputs must
        terminate if you want the iterable to terminate (e.g. be sure to pass
        num_epochs=1 if you are using something like read_batch_features).

    Returns:
      Numpy array of predicted probabilities with shape [batch_size, n_classes]
      (or an iterable of predicted probabilities if as_iterable is True).
    """
    key = prediction_key.PredictionKey.PROBABILITIES
    preds = super(DNNLinearCombinedClassifier, self).predict(
        x=x,
        input_fn=input_fn,
        batch_size=batch_size,
        outputs=[key],
        as_iterable=as_iterable)
    if as_iterable:
      return _as_iterable(preds, output=key)
    return preds[key]

  def export(self,
             export_dir,
             input_fn=None,
             input_feature_key=None,
             use_deprecated_input_fn=True,
             signature_fn=None,
             default_batch_size=1,
             exports_to_keep=None):
    """See BasEstimator.export."""
    def default_input_fn(unused_estimator, examples):
      return layers.parse_feature_columns_from_examples(
          examples, self._feature_columns)
    return super(DNNLinearCombinedClassifier, self).export(
        export_dir=export_dir,
        input_fn=input_fn or default_input_fn,
        input_feature_key=input_feature_key,
        use_deprecated_input_fn=use_deprecated_input_fn,
        signature_fn=(signature_fn or
                      export.classification_signature_fn_with_prob),
        prediction_key=prediction_key.PredictionKey.PROBABILITIES,
        default_batch_size=default_batch_size,
        exports_to_keep=exports_to_keep)

  @property
  @deprecated("2016-10-30",
              "This method will be removed after the deprecation date. "
              "To inspect variables, use get_variable_names() and "
              "get_variable_value().")
  def dnn_weights_(self):
    hiddenlayer_weights = [
        self.get_variable_value("dnn/hiddenlayer_%d/weights" % i)
        for i, _ in enumerate(self._dnn_hidden_units)
    ]
    logits_weights = [self.get_variable_value("dnn/logits/weights")]
    return hiddenlayer_weights + logits_weights

  @property
  @deprecated("2016-10-30",
              "This method will be removed after the deprecation date. "
              "To inspect variables, use get_variable_names() and "
              "get_variable_value().")
  def linear_weights_(self):
    values = {}
    if isinstance(self._linear_optimizer, str):
      optimizer_name = self._linear_optimizer
    else:
      optimizer_name = self._linear_optimizer.get_name()
    optimizer_regex = r".*/"+optimizer_name + r"(_\d)?$"
    for name in self.get_variable_names():
      if (name.startswith("linear/") and
          name != "linear/bias_weight" and
          name != "linear/learning_rate" and
          not re.match(optimizer_regex, name)):
        values[name] = self.get_variable_value(name)
    if len(values) == 1:
      return values[list(values.keys())[0]]
    return values

  @property
  @deprecated("2016-10-30",
              "This method will be removed after the deprecation date. "
              "To inspect variables, use get_variable_names() and "
              "get_variable_value().")
  def dnn_bias_(self):
    hiddenlayer_bias = [self.get_variable_value("dnn/hiddenlayer_%d/biases" % i)
                        for i, _ in enumerate(self._dnn_hidden_units)]
    logits_bias = [self.get_variable_value("dnn/logits/biases")]
    if not self._enable_centered_bias:
      return hiddenlayer_bias + logits_bias
    centered_bias = [self.get_variable_value(_CENTERED_BIAS_WEIGHT)]
    return hiddenlayer_bias + logits_bias  + centered_bias

  @property
  @deprecated("2016-10-30",
              "This method will be removed after the deprecation date. "
              "To inspect variables, use get_variable_names() and "
              "get_variable_value().")
  def linear_bias_(self):
    linear_bias = self.get_variable_value("linear/bias_weight")
    if not self._enable_centered_bias:
      return linear_bias
    centered_bias = [self.get_variable_value(_CENTERED_BIAS_WEIGHT)]
    return linear_bias  + centered_bias


class DNNLinearCombinedRegressor(estimator.Estimator):
  """A regressor for TensorFlow Linear and DNN joined training models.

  Example:

  ```python
  sparse_feature_a = sparse_column_with_hash_bucket(...)
  sparse_feature_b = sparse_column_with_hash_bucket(...)

  sparse_feature_a_x_sparse_feature_b = crossed_column(...)

  sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a,
                                          ...)
  sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b,
                                          ...)

  estimator = DNNLinearCombinedRegressor(
      # common settings
      weight_column_name=weight_column_name,
      # wide settings
      linear_feature_columns=[sparse_feature_a_x_sparse_feature_b],
      linear_optimizer=tf.train.FtrlOptimizer(...),
      # deep settings
      dnn_feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb],
      dnn_hidden_units=[1000, 500, 100],
      dnn_optimizer=tf.train.ProximalAdagradOptimizer(...))

  # To apply L1 and L2 regularization, you can set optimizers as follows:
  tf.train.ProximalAdagradOptimizer(
      learning_rate=0.1,
      l1_regularization_strength=0.001,
      l2_regularization_strength=0.001)
  # It is same for FtrlOptimizer.

  # Input builders
  def input_fn_train: # returns x, y
    ...
  def input_fn_eval: # returns x, y
    ...
  estimator.train(input_fn_train)
  estimator.evaluate(input_fn_eval)
  estimator.predict(x)
  ```

  Input of `fit`, `train`, and `evaluate` should have following features,
    otherwise there will be a `KeyError`:
      if `weight_column_name` is not `None`, a feature with
        `key=weight_column_name` whose value is a `Tensor`.
      for each `column` in `dnn_feature_columns` + `linear_feature_columns`:
      - if `column` is a `SparseColumn`, a feature with `key=column.name`
        whose `value` is a `SparseTensor`.
      - if `column` is a `WeightedSparseColumn`, two features: the first with
        `key` the id column name, the second with `key` the weight column name.
        Both features' `value` must be a `SparseTensor`.
      - if `column` is a `RealValuedColumn, a feature with `key=column.name`
        whose `value` is a `Tensor`.
  """

  def __init__(self,  # _joint_linear_weights pylint: disable=invalid-name
               model_dir=None,
               weight_column_name=None,
               linear_feature_columns=None,
               linear_optimizer=None,
               _joint_linear_weights=False,
               dnn_feature_columns=None,
               dnn_optimizer=None,
               dnn_hidden_units=None,
               dnn_activation_fn=nn.relu,
               dnn_dropout=None,
               gradient_clip_norm=None,
               enable_centered_bias=False,
               label_dimension=1,
               config=None,
               feature_engineering_fn=None,
               embedding_lr_multipliers=None,
               input_layer_min_slice_size=None):
    """Initializes a DNNLinearCombinedRegressor instance.

    Args:
      model_dir: Directory to save model parameters, graph and etc. This can
        also be used to load checkpoints from the directory into a estimator
        to continue training a previously saved model.
      weight_column_name: A string defining feature column name representing
        weights. It is used to down weight or boost examples during training. It
        will be multiplied by the loss of the example.
      linear_feature_columns: An iterable containing all the feature columns
        used by linear part of the model. All items in the set must be
        instances of classes derived from `FeatureColumn`.
      linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to
        the linear part of the model. If `None`, will use a FTRL optimizer.
      _joint_linear_weights: If True a single (possibly partitioned) variable
        will be used to store the linear model weights. It's faster, but
        requires that all columns are sparse and have the 'sum' combiner.
      dnn_feature_columns: An iterable containing all the feature columns used
        by deep part of the model. All items in the set must be instances of
        classes derived from `FeatureColumn`.
      dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to
        the deep part of the model. If `None`, will use an Adagrad optimizer.
      dnn_hidden_units: List of hidden units per layer. All layers are fully
        connected.
      dnn_activation_fn: Activation function applied to each layer. If None,
        will use `tf.nn.relu`.
      dnn_dropout: When not None, the probability we will drop out
        a given coordinate.
      gradient_clip_norm: A float > 0. If provided, gradients are clipped
        to their global norm with this clipping ratio. See
        tf.clip_by_global_norm for more details.
      enable_centered_bias: A bool. If True, estimator will learn a centered
        bias variable for each class. Rest of the model structure learns the
        residual after centered bias.
      label_dimension: Number of regression targets per example. This is the
        size of the last dimension of the labels and logits `Tensor` objects
        (typically, these have shape `[batch_size, label_dimension]`).
      config: RunConfig object to configure the runtime settings.
      feature_engineering_fn: Feature engineering function. Takes features and
                        labels which are the output of `input_fn` and
                        returns features and labels which will be fed
                        into the model.
      embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to
          a `float` multiplier. Multiplier will be used to multiply with
          learning rate for the embedding variables.
      input_layer_min_slice_size: Optional. The min slice size of input layer
          partitions. If not provided, will use the default of 64M.


    Raises:
      ValueError: If both linear_feature_columns and dnn_features_columns are
        empty at the same time.
    """
    linear_feature_columns = linear_feature_columns or []
    dnn_feature_columns = dnn_feature_columns or []
    self._feature_columns = linear_feature_columns + dnn_feature_columns
    if not self._feature_columns:
      raise ValueError("Either linear_feature_columns or dnn_feature_columns "
                       "must be defined.")
    head = head_lib._regression_head(  # pylint: disable=protected-access
        weight_column_name=weight_column_name,
        label_dimension=label_dimension,
        enable_centered_bias=enable_centered_bias)
    super(DNNLinearCombinedRegressor, self).__init__(
        model_fn=_dnn_linear_combined_model_fn,
        model_dir=model_dir,
        config=config,
        params={
            "head": head,
            "linear_feature_columns": linear_feature_columns,
            "linear_optimizer": linear_optimizer,
            "joint_linear_weights": _joint_linear_weights,
            "dnn_feature_columns": dnn_feature_columns,
            "dnn_optimizer": dnn_optimizer,
            "dnn_hidden_units": dnn_hidden_units,
            "dnn_activation_fn": dnn_activation_fn,
            "dnn_dropout": dnn_dropout,
            "gradient_clip_norm": gradient_clip_norm,
            "embedding_lr_multipliers": embedding_lr_multipliers,
            "input_layer_min_slice_size": input_layer_min_slice_size,
        },
        feature_engineering_fn=feature_engineering_fn)

  def evaluate(self,
               x=None,
               y=None,
               input_fn=None,
               feed_fn=None,
               batch_size=None,
               steps=None,
               metrics=None,
               name=None,
               checkpoint_path=None,
               hooks=None):
    """See evaluable.Evaluable."""
    # TODO(zakaria): remove once deprecation is finished (b/31229024)
    custom_metrics = {}
    if metrics:
      for key, metric in six.iteritems(metrics):
        if (not isinstance(metric, metric_spec.MetricSpec) and
            not isinstance(key, tuple)):
          custom_metrics[(key, prediction_key.PredictionKey.SCORES)] = metric
        else:
          custom_metrics[key] = metric

    return super(DNNLinearCombinedRegressor, self).evaluate(
        x=x,
        y=y,
        input_fn=input_fn,
        feed_fn=feed_fn,
        batch_size=batch_size,
        steps=steps,
        metrics=custom_metrics,
        name=name,
        checkpoint_path=checkpoint_path,
        hooks=hooks)

  @deprecated_arg_values(
      estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS,
      as_iterable=False)
  @deprecated_arg_values(
      "2017-03-01",
      "Please switch to predict_scores, or set `outputs` argument.",
      outputs=None)
  def predict(self, x=None, input_fn=None, batch_size=None, outputs=None,
              as_iterable=True):
    """Returns predictions for given features.

    By default, returns predicted scores. But this default will be dropped
    soon. Users should either pass `outputs`, or call `predict_scores` method.

    Args:
      x: features.
      input_fn: Input function. If set, x must be None.
      batch_size: Override default batch size.
      outputs: list of `str`, name of the output to predict.
        If `None`, returns scores.
      as_iterable: If True, return an iterable which keeps yielding predictions
        for each example until inputs are exhausted. Note: The inputs must
        terminate if you want the iterable to terminate (e.g. be sure to pass
        num_epochs=1 if you are using something like read_batch_features).

    Returns:
      Numpy array of predicted scores (or an iterable of predicted scores if
      as_iterable is True). If `label_dimension == 1`, the shape of the output
      is `[batch_size]`, otherwise the shape is `[batch_size, label_dimension]`.
      If `outputs` is set, returns a dict of predictions.
    """
    if not outputs:
      return self.predict_scores(
          x=x,
          input_fn=input_fn,
          batch_size=batch_size,
          as_iterable=as_iterable)
    return super(DNNLinearCombinedRegressor, self).predict(
        x=x,
        input_fn=input_fn,
        batch_size=batch_size,
        outputs=outputs,
        as_iterable=as_iterable)

  @deprecated_arg_values(
      estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS,
      as_iterable=False)
  def predict_scores(self, x=None, input_fn=None, batch_size=None,
                     as_iterable=True):
    """Returns predicted scores for given features.

    Args:
      x: features.
      input_fn: Input function. If set, x must be None.
      batch_size: Override default batch size.
      as_iterable: If True, return an iterable which keeps yielding predictions
        for each example until inputs are exhausted. Note: The inputs must
        terminate if you want the iterable to terminate (e.g. be sure to pass
        num_epochs=1 if you are using something like read_batch_features).

    Returns:
      Numpy array of predicted scores (or an iterable of predicted scores if
      as_iterable is True). If `label_dimension == 1`, the shape of the output
      is `[batch_size]`, otherwise the shape is `[batch_size, label_dimension]`.
    """
    key = prediction_key.PredictionKey.SCORES
    preds = super(DNNLinearCombinedRegressor, self).predict(
        x=x,
        input_fn=input_fn,
        batch_size=batch_size,
        outputs=[key],
        as_iterable=as_iterable)
    if as_iterable:
      return (pred[key] for pred in preds)
    return preds[key]

  def export(self,
             export_dir,
             input_fn=None,
             input_feature_key=None,
             use_deprecated_input_fn=True,
             signature_fn=None,
             default_batch_size=1,
             exports_to_keep=None):
    """See BaseEstimator.export."""
    def default_input_fn(unused_estimator, examples):
      return layers.parse_feature_columns_from_examples(
          examples, self._feature_columns)
    return super(DNNLinearCombinedRegressor, self).export(
        export_dir=export_dir,
        input_fn=input_fn or default_input_fn,
        input_feature_key=input_feature_key,
        use_deprecated_input_fn=use_deprecated_input_fn,
        signature_fn=signature_fn or export.regression_signature_fn,
        prediction_key=prediction_key.PredictionKey.SCORES,
        default_batch_size=default_batch_size,
        exports_to_keep=exports_to_keep)