aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/learn/python/learn/datasets/synthetic.py
blob: 907dc0f3dfced7e55c5f46711fbe93f6400e1de7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Synthetic dataset generators."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.contrib.learn.python.learn.datasets.base import Dataset

def circles(n_samples=100, noise=None, seed=None, factor=0.8, n_classes=2, *args, **kwargs):
  """Create circles separated by some value

  Args:
    n_samples: int, number of datapoints to generate
    noise: float or None, standard deviation of the Gaussian noise added
    seed: int or None, seed for the noise
    factor: float, size factor of the inner circles with respect to the outer ones
    n_classes: int, number of classes to generate

  Returns:
    Shuffled features and labels for 'circles' synthetic dataset of type `base.Dataset`

  Note:
    The multi-class support might not work as expected if `noise` is enabled

  TODO:
    - Generation of unbalanced data

  Credit goes to (under BSD 3 clause):
    B. Thirion,
    G. Varoquaux,
    A. Gramfort,
    V. Michel,
    O. Grisel,
    G. Louppe,
    J. Nothman
  """
  if seed is not None:
    np.random.seed(seed)
  # Algo: 1) Generate initial circle, 2) For ever class generate a smaller radius circle
  linspace = np.linspace(0, 2*np.pi, n_samples // n_classes)
  circ_x = np.empty(0, dtype=np.int32)
  circ_y = np.empty(0, dtype=np.int32)
  base_cos = np.cos(linspace)
  base_sin = np.sin(linspace)

  y = np.empty(0, dtype=np.int32)
  for label in range(n_classes):
    circ_x = np.append(circ_x, base_cos)
    circ_y = np.append(circ_y, base_sin)
    base_cos *= factor
    base_sin *= factor
    y = np.append(y, label*np.ones(n_samples // n_classes, dtype=np.int32))

  # Add more points if n_samples is not divisible by n_classes (unbalanced!)
  extras = n_samples % n_classes
  circ_x = np.append(circ_x, np.cos(np.random.rand(extras)*2*np.pi))
  circ_y = np.append(circ_y, np.sin(np.random.rand(extras)*2*np.pi))
  y = np.append(y, np.zeros(extras, dtype=np.int32))

  # Reshape the features/labels
  X = np.vstack((circ_x, circ_y)).T
  y = np.hstack(y)

  # Shuffle the data
  indices = np.random.permutation(range(n_samples))
  if noise is not None:
    X += np.random.normal(scale=noise, size=X.shape)
  return Dataset(data=X[indices], target=y[indices])


def spirals(n_samples=100, noise=None, seed=None,
            mode = 'archimedes',
            n_loops = 2,
            *args, **kwargs):
  """Create spirals

  Currently only binary classification is supported for spiral generation

  Args:
    n_samples: int, number of datapoints to generate
    noise: float or None, standard deviation of the Gaussian noise added
    seed: int or None, seed for the noise
    n_loops: int, number of spiral loops, doesn't play well with 'bernoulli'
    mode: str, how the spiral should be generated. Current implementations:
      'archimedes': a spiral with equal distances between branches
      'bernoulli': logarithmic spiral with branch distances increasing
      'fermat': a spiral with branch distances decreasing (sqrt)

  Returns:
    Shuffled features and labels for 'spirals' synthetic dataset of type `base.Dataset`

  Raises:
    ValueError: If the generation `mode` is not valid

  TODO:
    - Generation of unbalanced data
  """
  n_classes = 2 # I am not sure how to make it multiclass

  _modes = {
    'archimedes': _archimedes_spiral,
    'bernoulli': _bernoulli_spiral,
    'fermat': _fermat_spiral
  }

  if mode is None or mode not in _modes:
    raise ValueError("Cannot generate spiral with mode %s"%mode)

  if seed is not None:
    np.random.seed(seed)
  linspace = np.linspace(0, 2*n_loops*np.pi, n_samples // n_classes)
  spir_x = np.empty(0, dtype=np.int32)
  spir_y = np.empty(0, dtype=np.int32)

  y = np.empty(0, dtype=np.int32)
  for label in range(n_classes):
    base_cos, base_sin = _modes[mode](linspace, label*np.pi, *args, **kwargs)
    spir_x = np.append(spir_x, base_cos)
    spir_y = np.append(spir_y, base_sin)
    y = np.append(y, label*np.ones(n_samples // n_classes, dtype=np.int32))

  # Add more points if n_samples is not divisible by n_classes (unbalanced!)
  extras = n_samples % n_classes
  if extras > 0:
    x_exrta, y_extra = _modes[mode](np.random.rand(extras)*2*np.pi, *args, **kwargs)
    spir_x = np.append(spir_x, x_extra)
    spir_y = np.append(spir_y, y_extra)
    y = np.append(y, np.zeros(extras, dtype=np.int32))

  # Reshape the features/labels
  X = np.vstack((spir_x, spir_y)).T
  y = np.hstack(y)

  # Shuffle the data
  indices = np.random.permutation(range(n_samples))
  if noise is not None:
    X += np.random.normal(scale=noise, size=X.shape)
  return Dataset(data=X[indices], target=y[indices])


def _archimedes_spiral(theta, theta_offset=0., *args, **kwargs):
  """Return Archimedes spiral

  Args:
    theta: array-like, angles from polar coordinates to be converted
    theta_offset: float, angle offset in radians (2*pi = 0)
  """
  x, y = theta*np.cos(theta + theta_offset), theta*np.sin(theta + theta_offset)
  x_norm = np.max(np.abs(x))
  y_norm = np.max(np.abs(y))
  x, y = x / x_norm, y / y_norm
  return x, y


def _bernoulli_spiral(theta, theta_offset=0., *args, **kwargs):
  """Return Equiangular (Bernoulli's) spiral

  Args:
    theta: array-like, angles from polar coordinates to be converted
    theta_offset: float, angle offset in radians (2*pi = 0)

  Kwargs:
    exp_scale: growth rate of the exponential
  """
  exp_scale = kwargs.pop('exp_scale', 0.1)

  x, y = np.exp(exp_scale*theta)*np.cos(theta + theta_offset), np.exp(exp_scale*theta)*np.sin(theta + theta_offset)
  x_norm = np.max(np.abs(x))
  y_norm = np.max(np.abs(y))
  x, y = x / x_norm, y / y_norm
  return x, y


def _fermat_spiral(theta, theta_offset=0., *args, **kwargs):
  """Return Parabolic (Fermat's) spiral

  Args:
    theta: array-like, angles from polar coordinates to be converted
    theta_offset: float, angle offset in radians (2*pi = 0)
  """
  x, y = np.sqrt(theta)*np.cos(theta + theta_offset), np.sqrt(theta)*np.sin(theta + theta_offset)
  x_norm = np.max(np.abs(x))
  y_norm = np.max(np.abs(y))
  x, y = x / x_norm, y / y_norm
  return x, y