aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/grid_rnn/python/ops/grid_rnn_cell.py
blob: 269b2245819f6d41c2eaf5ac345d149c51f233a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Module for constructing GridRNN cells"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import namedtuple
import functools

from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import variable_scope as vs
from tensorflow.contrib import layers
from tensorflow.contrib import rnn


class GridRNNCell(rnn.RNNCell):
  """Grid recurrent cell.

  This implementation is based on:

    http://arxiv.org/pdf/1507.01526v3.pdf

    This is the generic implementation of GridRNN. Users can specify arbitrary
    number of dimensions,
    set some of them to be priority (section 3.2), non-recurrent (section 3.3)
    and input/output dimensions (section 3.4).
    Weight sharing can also be specified using the `tied` parameter.
    Type of recurrent units can be specified via `cell_fn`.
  """

  def __init__(self,
               num_units,
               num_dims=1,
               input_dims=None,
               output_dims=None,
               priority_dims=None,
               non_recurrent_dims=None,
               tied=False,
               cell_fn=None,
               non_recurrent_fn=None):
    """Initialize the parameters of a Grid RNN cell

    Args:
      num_units: int, The number of units in all dimensions of this GridRNN cell
      num_dims: int, Number of dimensions of this grid.
      input_dims: int or list, List of dimensions which will receive input data.
      output_dims: int or list, List of dimensions from which the output will be
        recorded.
      priority_dims: int or list, List of dimensions to be considered as
        priority dimensions.
              If None, no dimension is prioritized.
      non_recurrent_dims: int or list, List of dimensions that are not
        recurrent.
              The transfer function for non-recurrent dimensions is specified
                via `non_recurrent_fn`,
              which is default to be `tensorflow.nn.relu`.
      tied: bool, Whether to share the weights among the dimensions of this
        GridRNN cell.
              If there are non-recurrent dimensions in the grid, weights are
                shared between each
              group of recurrent and non-recurrent dimensions.
      cell_fn: function, a function which returns the recurrent cell object. Has
        to be in the following signature:
              def cell_func(num_units, input_size):
                # ...

              and returns an object of type `RNNCell`. If None, LSTMCell with
                default parameters will be used.
      non_recurrent_fn: a tensorflow Op that will be the transfer function of
        the non-recurrent dimensions

    Raises:
      TypeError: if cell_fn does not return an RNNCell instance.
    """
    if num_dims < 1:
      raise ValueError('dims must be >= 1: {}'.format(num_dims))

    self._config = _parse_rnn_config(num_dims, input_dims, output_dims,
                                     priority_dims, non_recurrent_dims,
                                     non_recurrent_fn or nn.relu, tied,
                                     num_units)

    cell_input_size = (self._config.num_dims - 1) * num_units
    if cell_fn is None:
      my_cell_fn = functools.partial(
          rnn.LSTMCell,
          num_units=num_units, input_size=cell_input_size,
          state_is_tuple=False)
    else:
      my_cell_fn = lambda: cell_fn(num_units, cell_input_size)
    if tied:
      self._cells = [my_cell_fn()] * num_dims
    else:
      self._cells = [my_cell_fn() for _ in range(num_dims)]
    if not isinstance(self._cells[0], rnn.RNNCell):
      raise TypeError(
          'cell_fn must return an RNNCell instance, saw: %s'
          % type(self._cells[0]))

  @property
  def input_size(self):
    # temporarily using num_units as the input_size of each dimension.
    # The actual input size only determined when this cell get invoked,
    # so this information can be considered unreliable.
    return self._config.num_units * len(self._config.inputs)

  @property
  def output_size(self):
    return self._cells[0].output_size * len(self._config.outputs)

  @property
  def state_size(self):
    return self._cells[0].state_size * len(self._config.recurrents)

  def __call__(self, inputs, state, scope=None):
    """Run one step of GridRNN.

    Args:
      inputs: input Tensor, 2D, batch x input_size. Or None
      state: state Tensor, 2D, batch x state_size. Note that state_size =
        cell_state_size * recurrent_dims
      scope: VariableScope for the created subgraph; defaults to "GridRNNCell".

    Returns:
      A tuple containing:

      - A 2D, batch x output_size, Tensor representing the output of the cell
        after reading "inputs" when previous state was "state".
      - A 2D, batch x state_size, Tensor representing the new state of the cell
        after reading "inputs" when previous state was "state".
    """
    state_sz = state.get_shape().as_list()[1]
    if self.state_size != state_sz:
      raise ValueError(
          'Actual state size not same as specified: {} vs {}.'.format(
              state_sz, self.state_size))

    conf = self._config
    dtype = inputs.dtype if inputs is not None else state.dtype

    # c_prev is `m`, and m_prev is `h` in the paper.
    # Keep c and m here for consistency with the codebase
    c_prev = [None] * self._config.num_dims
    m_prev = [None] * self._config.num_dims
    cell_output_size = self._cells[0].state_size - conf.num_units

    # for LSTM   : state = memory cell + output, hence cell_output_size > 0
    # for GRU/RNN: state = output (whose size is equal to _num_units),
    #              hence cell_output_size = 0
    for recurrent_dim, start_idx in zip(self._config.recurrents, range(
        0, self.state_size, self._cells[0].state_size)):
      if cell_output_size > 0:
        c_prev[recurrent_dim] = array_ops.slice(state, [0, start_idx],
                                                [-1, conf.num_units])
        m_prev[recurrent_dim] = array_ops.slice(
            state, [0, start_idx + conf.num_units], [-1, cell_output_size])
      else:
        m_prev[recurrent_dim] = array_ops.slice(state, [0, start_idx],
                                                [-1, conf.num_units])

    new_output = [None] * conf.num_dims
    new_state = [None] * conf.num_dims

    with vs.variable_scope(scope or type(self).__name__):  # GridRNNCell

      # project input
      if inputs is not None and sum(inputs.get_shape().as_list()) > 0 and len(
          conf.inputs) > 0:
        input_splits = array_ops.split(
            value=inputs, num_or_size_splits=len(conf.inputs), axis=1)
        input_sz = input_splits[0].get_shape().as_list()[1]

        for i, j in enumerate(conf.inputs):
          input_project_m = vs.get_variable(
              'project_m_{}'.format(j), [input_sz, conf.num_units], dtype=dtype)
          m_prev[j] = math_ops.matmul(input_splits[i], input_project_m)

          if cell_output_size > 0:
            input_project_c = vs.get_variable(
                'project_c_{}'.format(j), [input_sz, conf.num_units],
                dtype=dtype)
            c_prev[j] = math_ops.matmul(input_splits[i], input_project_c)

      _propagate(conf.non_priority, conf, self._cells, c_prev, m_prev,
                 new_output, new_state, True)
      _propagate(conf.priority, conf, self._cells,
                 c_prev, m_prev, new_output, new_state, False)

      output_tensors = [new_output[i] for i in self._config.outputs]
      output = array_ops.zeros(
          [0, 0], dtype) if len(output_tensors) == 0 else array_ops.concat(
              output_tensors, 1)

      state_tensors = [new_state[i] for i in self._config.recurrents]
      states = array_ops.zeros(
          [0, 0],
          dtype) if len(state_tensors) == 0 else array_ops.concat(state_tensors,
                                                                  1)

    return output, states


"""Specialized cells, for convenience
"""


class Grid1BasicRNNCell(GridRNNCell):
  """1D BasicRNN cell"""

  def __init__(self, num_units):
    super(Grid1BasicRNNCell, self).__init__(
        num_units=num_units, num_dims=1,
        input_dims=0, output_dims=0, priority_dims=0, tied=False,
        cell_fn=lambda n, i: rnn.BasicRNNCell(num_units=n, input_size=i))


class Grid2BasicRNNCell(GridRNNCell):
  """2D BasicRNN cell

  This creates a 2D cell which receives input and gives output in the first
  dimension.

  The first dimension can optionally be non-recurrent if `non_recurrent_fn` is
  specified.
  """

  def __init__(self, num_units, tied=False, non_recurrent_fn=None):
    super(Grid2BasicRNNCell, self).__init__(
        num_units=num_units, num_dims=2,
        input_dims=0, output_dims=0, priority_dims=0, tied=tied,
        non_recurrent_dims=None if non_recurrent_fn is None else 0,
        cell_fn=lambda n, i: rnn.BasicRNNCell(num_units=n, input_size=i),
        non_recurrent_fn=non_recurrent_fn)


class Grid1BasicLSTMCell(GridRNNCell):
  """1D BasicLSTM cell"""

  def __init__(self, num_units, forget_bias=1):
    super(Grid1BasicLSTMCell, self).__init__(
        num_units=num_units, num_dims=1,
        input_dims=0, output_dims=0, priority_dims=0, tied=False,
        cell_fn=lambda n, i: rnn.BasicLSTMCell(
            num_units=n,
            forget_bias=forget_bias, input_size=i,
            state_is_tuple=False))


class Grid2BasicLSTMCell(GridRNNCell):
  """2D BasicLSTM cell

    This creates a 2D cell which receives input and gives output in the first
    dimension.

    The first dimension can optionally be non-recurrent if `non_recurrent_fn` is
    specified.
  """

  def __init__(self,
               num_units,
               tied=False,
               non_recurrent_fn=None,
               forget_bias=1):
    super(Grid2BasicLSTMCell, self).__init__(
        num_units=num_units, num_dims=2,
        input_dims=0, output_dims=0, priority_dims=0, tied=tied,
        non_recurrent_dims=None if non_recurrent_fn is None else 0,
        cell_fn=lambda n, i: rnn.BasicLSTMCell(
            num_units=n, forget_bias=forget_bias, input_size=i,
            state_is_tuple=False),
        non_recurrent_fn=non_recurrent_fn)


class Grid1LSTMCell(GridRNNCell):
  """1D LSTM cell

    This is different from Grid1BasicLSTMCell because it gives options to
    specify the forget bias and enabling peepholes
  """

  def __init__(self, num_units, use_peepholes=False, forget_bias=1.0):
    super(Grid1LSTMCell, self).__init__(
        num_units=num_units, num_dims=1,
        input_dims=0, output_dims=0, priority_dims=0,
        cell_fn=lambda n, i: rnn.LSTMCell(
            num_units=n, input_size=i, use_peepholes=use_peepholes,
            forget_bias=forget_bias, state_is_tuple=False))


class Grid2LSTMCell(GridRNNCell):
  """2D LSTM cell

    This creates a 2D cell which receives input and gives output in the first
    dimension.
    The first dimension can optionally be non-recurrent if `non_recurrent_fn` is
    specified.
  """

  def __init__(self,
               num_units,
               tied=False,
               non_recurrent_fn=None,
               use_peepholes=False,
               forget_bias=1.0):
    super(Grid2LSTMCell, self).__init__(
        num_units=num_units, num_dims=2,
        input_dims=0, output_dims=0, priority_dims=0, tied=tied,
        non_recurrent_dims=None if non_recurrent_fn is None else 0,
        cell_fn=lambda n, i: rnn.LSTMCell(
            num_units=n, input_size=i, forget_bias=forget_bias,
            use_peepholes=use_peepholes, state_is_tuple=False),
        non_recurrent_fn=non_recurrent_fn)


class Grid3LSTMCell(GridRNNCell):
  """3D BasicLSTM cell

    This creates a 2D cell which receives input and gives output in the first
    dimension.
    The first dimension can optionally be non-recurrent if `non_recurrent_fn` is
    specified.
    The second and third dimensions are LSTM.
  """

  def __init__(self,
               num_units,
               tied=False,
               non_recurrent_fn=None,
               use_peepholes=False,
               forget_bias=1.0):
    super(Grid3LSTMCell, self).__init__(
        num_units=num_units, num_dims=3,
        input_dims=0, output_dims=0, priority_dims=0, tied=tied,
        non_recurrent_dims=None if non_recurrent_fn is None else 0,
        cell_fn=lambda n, i: rnn.LSTMCell(
            num_units=n, input_size=i, forget_bias=forget_bias,
            use_peepholes=use_peepholes, state_is_tuple=False),
        non_recurrent_fn=non_recurrent_fn)


class Grid2GRUCell(GridRNNCell):
  """2D LSTM cell

    This creates a 2D cell which receives input and gives output in the first
    dimension.
    The first dimension can optionally be non-recurrent if `non_recurrent_fn` is
    specified.
  """

  def __init__(self, num_units, tied=False, non_recurrent_fn=None):
    super(Grid2GRUCell, self).__init__(
        num_units=num_units, num_dims=2,
        input_dims=0, output_dims=0, priority_dims=0, tied=tied,
        non_recurrent_dims=None if non_recurrent_fn is None else 0,
        cell_fn=lambda n, i: rnn.GRUCell(num_units=n, input_size=i),
        non_recurrent_fn=non_recurrent_fn)


"""Helpers
"""

_GridRNNDimension = namedtuple(
    '_GridRNNDimension',
    ['idx', 'is_input', 'is_output', 'is_priority', 'non_recurrent_fn'])

_GridRNNConfig = namedtuple('_GridRNNConfig',
                            ['num_dims', 'dims', 'inputs', 'outputs',
                             'recurrents', 'priority', 'non_priority', 'tied',
                             'num_units'])


def _parse_rnn_config(num_dims, ls_input_dims, ls_output_dims, ls_priority_dims,
                      ls_non_recurrent_dims, non_recurrent_fn, tied, num_units):

  def check_dim_list(ls):
    if ls is None:
      ls = []
    if not isinstance(ls, (list, tuple)):
      ls = [ls]
    ls = sorted(set(ls))
    if any(_ < 0 or _ >= num_dims for _ in ls):
      raise ValueError('Invalid dims: {}. Must be in [0, {})'.format(ls,
                                                                     num_dims))
    return ls

  input_dims = check_dim_list(ls_input_dims)
  output_dims = check_dim_list(ls_output_dims)
  priority_dims = check_dim_list(ls_priority_dims)
  non_recurrent_dims = check_dim_list(ls_non_recurrent_dims)

  rnn_dims = []
  for i in range(num_dims):
    rnn_dims.append(
        _GridRNNDimension(
            idx=i,
            is_input=(i in input_dims),
            is_output=(i in output_dims),
            is_priority=(i in priority_dims),
            non_recurrent_fn=non_recurrent_fn if i in non_recurrent_dims else
            None))
  return _GridRNNConfig(
      num_dims=num_dims,
      dims=rnn_dims,
      inputs=input_dims,
      outputs=output_dims,
      recurrents=[x for x in range(num_dims) if x not in non_recurrent_dims],
      priority=priority_dims,
      non_priority=[x for x in range(num_dims) if x not in priority_dims],
      tied=tied,
      num_units=num_units)


def _propagate(dim_indices, conf, cells, c_prev, m_prev, new_output, new_state,
               first_call):
  """Propagates through all the cells in dim_indices dimensions.
  """
  if len(dim_indices) == 0:
    return

  # Because of the way RNNCells are implemented, we take the last dimension
  # (H_{N-1}) out and feed it as the state of the RNN cell
  # (in `last_dim_output`).
  # The input of the cell (H_0 to H_{N-2}) are concatenated into `cell_inputs`
  if conf.num_dims > 1:
    ls_cell_inputs = [None] * (conf.num_dims - 1)
    for d in conf.dims[:-1]:
      ls_cell_inputs[d.idx] = new_output[d.idx] if new_output[
          d.idx] is not None else m_prev[d.idx]
    cell_inputs = array_ops.concat(ls_cell_inputs, 1)
  else:
    cell_inputs = array_ops.zeros([m_prev[0].get_shape().as_list()[0], 0],
                                  m_prev[0].dtype)

  last_dim_output = new_output[-1] if new_output[-1] is not None else m_prev[-1]

  for i in dim_indices:
    d = conf.dims[i]
    if d.non_recurrent_fn:
      linear_args = array_ops.concat(
          [cell_inputs, last_dim_output],
          1) if conf.num_dims > 1 else last_dim_output
      with vs.variable_scope('non_recurrent' if conf.tied else
                             'non_recurrent/cell_{}'.format(i)):
        if conf.tied and not (first_call and i == dim_indices[0]):
          vs.get_variable_scope().reuse_variables()
        new_output[d.idx] = layers.legacy_fully_connected(
            linear_args,
            num_output_units=conf.num_units,
            activation_fn=d.non_recurrent_fn,
            weight_init=vs.get_variable_scope().initializer or
            layers.initializers.xavier_initializer)
    else:
      if c_prev[i] is not None:
        cell_state = array_ops.concat([c_prev[i], last_dim_output], 1)
      else:
        # for GRU/RNN, the state is just the previous output
        cell_state = last_dim_output

      with vs.variable_scope('recurrent' if conf.tied else
                             'recurrent/cell_{}'.format(i)):
        if conf.tied and not (first_call and i == dim_indices[0]):
          vs.get_variable_scope().reuse_variables()
        cell = cells[i]
        new_output[d.idx], new_state[d.idx] = cell(cell_inputs, cell_state)