aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/grid_rnn/python/ops/grid_rnn_cell.py
blob: bcd2a34c4e791a2ab66a439109145d6b78c14e22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Module for constructing GridRNN cells"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import namedtuple
import functools

from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import variable_scope as vs

from tensorflow.python.platform import tf_logging as logging
from tensorflow.contrib import layers
from tensorflow.contrib import rnn


class GridRNNCell(rnn.RNNCell):
  """Grid recurrent cell.

  This implementation is based on:

    http://arxiv.org/pdf/1507.01526v3.pdf

    This is the generic implementation of GridRNN. Users can specify arbitrary
    number of dimensions,
    set some of them to be priority (section 3.2), non-recurrent (section 3.3)
    and input/output dimensions (section 3.4).
    Weight sharing can also be specified using the `tied` parameter.
    Type of recurrent units can be specified via `cell_fn`.
  """

  def __init__(self,
               num_units,
               num_dims=1,
               input_dims=None,
               output_dims=None,
               priority_dims=None,
               non_recurrent_dims=None,
               tied=False,
               cell_fn=None,
               non_recurrent_fn=None,
               state_is_tuple=True,
               output_is_tuple=True):
    """Initialize the parameters of a Grid RNN cell

    Args:
      num_units: int, The number of units in all dimensions of this GridRNN cell
      num_dims: int, Number of dimensions of this grid.
      input_dims: int or list, List of dimensions which will receive input data.
      output_dims: int or list, List of dimensions from which the output will be
        recorded.
      priority_dims: int or list, List of dimensions to be considered as
        priority dimensions.
              If None, no dimension is prioritized.
      non_recurrent_dims: int or list, List of dimensions that are not
        recurrent.
              The transfer function for non-recurrent dimensions is specified
                via `non_recurrent_fn`, which is
                default to be `tensorflow.nn.relu`.
      tied: bool, Whether to share the weights among the dimensions of this
        GridRNN cell.
              If there are non-recurrent dimensions in the grid, weights are
                shared between each group of recurrent and non-recurrent
                dimensions.
      cell_fn: function, a function which returns the recurrent cell object.
        Has to be in the following signature:
              ```
              def cell_func(num_units):
                # ...
              ```
              and returns an object of type `RNNCell`. If None, LSTMCell with
                default parameters will be used.
        Note that if you use a custom RNNCell (with `cell_fn`), it is your
        responsibility to make sure the inner cell use `state_is_tuple=True`.

      non_recurrent_fn: a tensorflow Op that will be the transfer function of
        the non-recurrent dimensions
      state_is_tuple: If True, accepted and returned states are tuples of the
        states of the recurrent dimensions. If False, they are concatenated
        along the column axis. The latter behavior will soon be deprecated.

        Note that if you use a custom RNNCell (with `cell_fn`), it is your
        responsibility to make sure the inner cell use `state_is_tuple=True`.

      output_is_tuple: If True, the output is a tuple of the outputs of the
        recurrent dimensions. If False, they are concatenated along the
        column axis. The later behavior will soon be deprecated.

    Raises:
      TypeError: if cell_fn does not return an RNNCell instance.
    """
    if not state_is_tuple:
      logging.warning('%s: Using a concatenated state is slower and will '
                      'soon be deprecated.  Use state_is_tuple=True.', self)
    if not output_is_tuple:
      logging.warning('%s: Using a concatenated output is slower and will '
                      'soon be deprecated.  Use output_is_tuple=True.', self)

    if num_dims < 1:
      raise ValueError('dims must be >= 1: {}'.format(num_dims))

    self._config = _parse_rnn_config(num_dims, input_dims, output_dims,
                                     priority_dims, non_recurrent_dims,
                                     non_recurrent_fn or nn.relu, tied,
                                     num_units)

    self._state_is_tuple = state_is_tuple
    self._output_is_tuple = output_is_tuple

    if cell_fn is None:
      my_cell_fn = functools.partial(
          rnn.LSTMCell, num_units=num_units, state_is_tuple=state_is_tuple)
    else:
      my_cell_fn = lambda: cell_fn(num_units)
    if tied:
      self._cells = [my_cell_fn()] * num_dims
    else:
      self._cells = [my_cell_fn() for _ in range(num_dims)]
    if not isinstance(self._cells[0], rnn.RNNCell):
      raise TypeError('cell_fn must return an RNNCell instance, saw: %s' %
                      type(self._cells[0]))

    if self._output_is_tuple:
      self._output_size = tuple(self._cells[0].output_size
                                for _ in self._config.outputs)
    else:
      self._output_size = self._cells[0].output_size * len(self._config.outputs)

    if self._state_is_tuple:
      self._state_size = tuple(self._cells[0].state_size
                               for _ in self._config.recurrents)
    else:
      self._state_size = self._cell_state_size() * len(self._config.recurrents)

  @property
  def output_size(self):
    return self._output_size

  @property
  def state_size(self):
    return self._state_size

  def __call__(self, inputs, state, scope=None):
    """Run one step of GridRNN.

    Args:
      inputs: input Tensor, 2D, batch x input_size. Or None
      state: state Tensor, 2D, batch x state_size. Note that state_size =
        cell_state_size * recurrent_dims
      scope: VariableScope for the created subgraph; defaults to "GridRNNCell".

    Returns:
      A tuple containing:

      - A 2D, batch x output_size, Tensor representing the output of the cell
        after reading "inputs" when previous state was "state".
      - A 2D, batch x state_size, Tensor representing the new state of the cell
        after reading "inputs" when previous state was "state".
    """
    conf = self._config
    dtype = inputs.dtype

    c_prev, m_prev, cell_output_size = self._extract_states(state)

    new_output = [None] * conf.num_dims
    new_state = [None] * conf.num_dims

    with vs.variable_scope(scope or type(self).__name__):  # GridRNNCell
      # project input, populate c_prev and m_prev
      self._project_input(inputs, c_prev, m_prev, cell_output_size > 0)

      # propagate along dimensions, first for non-priority dimensions
      # then priority dimensions
      _propagate(conf.non_priority, conf, self._cells, c_prev, m_prev,
                 new_output, new_state, True)
      _propagate(conf.priority, conf, self._cells,
                 c_prev, m_prev, new_output, new_state, False)

      # collect outputs and states
      output_tensors = [new_output[i] for i in self._config.outputs]
      if self._output_is_tuple:
        output = tuple(output_tensors)
      else:
        if output_tensors:
          output = array_ops.concat(output_tensors, 1)
        else:
          output = array_ops.zeros([0, 0], dtype)

      if self._state_is_tuple:
        states = tuple(new_state[i] for i in self._config.recurrents)
      else:
        # concat each state first, then flatten the whole thing
        state_tensors = [
            x for i in self._config.recurrents for x in new_state[i]
        ]
        if state_tensors:
          states = array_ops.concat(state_tensors, 1)
        else:
          states = array_ops.zeros([0, 0], dtype)

    return output, states

  def _extract_states(self, state):
    """Extract the cell and previous output tensors from the given state.

    Args:
      state: The RNN state.

    Returns:
      Tuple of the cell value, previous output, and cell_output_size.

    Raises:
      ValueError: If len(self._config.recurrents) != len(state).
    """
    conf = self._config

    # c_prev is `m` (cell value), and
    # m_prev is `h` (previous output) in the paper.
    # Keeping c and m here for consistency with the codebase
    c_prev = [None] * conf.num_dims
    m_prev = [None] * conf.num_dims

    # for LSTM   : state = memory cell + output, hence cell_output_size > 0
    # for GRU/RNN: state = output (whose size is equal to _num_units),
    #              hence cell_output_size = 0
    total_cell_state_size = self._cell_state_size()
    cell_output_size = total_cell_state_size - conf.num_units

    if self._state_is_tuple:
      if len(conf.recurrents) != len(state):
        raise ValueError('Expected state as a tuple of {} '
                         'element'.format(len(conf.recurrents)))

      for recurrent_dim, recurrent_state in zip(conf.recurrents, state):
        if cell_output_size > 0:
          c_prev[recurrent_dim], m_prev[recurrent_dim] = recurrent_state
        else:
          m_prev[recurrent_dim] = recurrent_state
    else:
      for recurrent_dim, start_idx in zip(conf.recurrents,
                                          range(0, self.state_size,
                                                total_cell_state_size)):
        if cell_output_size > 0:
          c_prev[recurrent_dim] = array_ops.slice(state, [0, start_idx],
                                                  [-1, conf.num_units])
          m_prev[recurrent_dim] = array_ops.slice(
              state, [0, start_idx + conf.num_units], [-1, cell_output_size])
        else:
          m_prev[recurrent_dim] = array_ops.slice(state, [0, start_idx],
                                                  [-1, conf.num_units])
    return c_prev, m_prev, cell_output_size

  def _project_input(self, inputs, c_prev, m_prev, with_c):
    """Fills in c_prev and m_prev with projected input, for input dimensions.

    Args:
      inputs: inputs tensor
      c_prev: cell value
      m_prev: previous output
      with_c: boolean; whether to include project_c.

    Raises:
      ValueError: if len(self._config.input) != len(inputs)
    """
    conf = self._config

    if (inputs is not None and inputs.get_shape().with_rank(2)[1].value > 0 and
        conf.inputs):
      if isinstance(inputs, tuple):
        if len(conf.inputs) != len(inputs):
          raise ValueError('Expect inputs as a tuple of {} '
                           'tensors'.format(len(conf.inputs)))
        input_splits = inputs
      else:
        input_splits = array_ops.split(
            value=inputs, num_or_size_splits=len(conf.inputs), axis=1)
      input_sz = input_splits[0].get_shape().with_rank(2)[1].value

      for i, j in enumerate(conf.inputs):
        input_project_m = vs.get_variable(
            'project_m_{}'.format(j), [input_sz, conf.num_units],
            dtype=inputs.dtype)
        m_prev[j] = math_ops.matmul(input_splits[i], input_project_m)

        if with_c:
          input_project_c = vs.get_variable(
              'project_c_{}'.format(j), [input_sz, conf.num_units],
              dtype=inputs.dtype)
          c_prev[j] = math_ops.matmul(input_splits[i], input_project_c)

  def _cell_state_size(self):
    """Total size of the state of the inner cell used in this grid.

    Returns:
      Total size of the state of the inner cell.
    """
    state_sizes = self._cells[0].state_size
    if isinstance(state_sizes, tuple):
      return sum(state_sizes)
    return state_sizes


"""Specialized cells, for convenience
"""


class Grid1BasicRNNCell(GridRNNCell):
  """1D BasicRNN cell"""

  def __init__(self, num_units, state_is_tuple=True, output_is_tuple=True):
    super(Grid1BasicRNNCell, self).__init__(
        num_units=num_units,
        num_dims=1,
        input_dims=0,
        output_dims=0,
        priority_dims=0,
        tied=False,
        cell_fn=lambda n: rnn.BasicRNNCell(num_units=n),
        state_is_tuple=state_is_tuple,
        output_is_tuple=output_is_tuple)


class Grid2BasicRNNCell(GridRNNCell):
  """2D BasicRNN cell

  This creates a 2D cell which receives input and gives output in the first
  dimension.

  The first dimension can optionally be non-recurrent if `non_recurrent_fn` is
  specified.
  """

  def __init__(self,
               num_units,
               tied=False,
               non_recurrent_fn=None,
               state_is_tuple=True,
               output_is_tuple=True):
    super(Grid2BasicRNNCell, self).__init__(
        num_units=num_units,
        num_dims=2,
        input_dims=0,
        output_dims=0,
        priority_dims=0,
        tied=tied,
        non_recurrent_dims=None if non_recurrent_fn is None else 0,
        cell_fn=lambda n: rnn.BasicRNNCell(num_units=n),
        non_recurrent_fn=non_recurrent_fn,
        state_is_tuple=state_is_tuple,
        output_is_tuple=output_is_tuple)


class Grid1BasicLSTMCell(GridRNNCell):
  """1D BasicLSTM cell."""

  def __init__(self,
               num_units,
               forget_bias=1,
               state_is_tuple=True,
               output_is_tuple=True):
    def cell_fn(n):
      return rnn.BasicLSTMCell(num_units=n, forget_bias=forget_bias)
    super(Grid1BasicLSTMCell, self).__init__(
        num_units=num_units,
        num_dims=1,
        input_dims=0,
        output_dims=0,
        priority_dims=0,
        tied=False,
        cell_fn=cell_fn,
        state_is_tuple=state_is_tuple,
        output_is_tuple=output_is_tuple)


class Grid2BasicLSTMCell(GridRNNCell):
  """2D BasicLSTM cell.

  This creates a 2D cell which receives input and gives output in the first
  dimension.

  The first dimension can optionally be non-recurrent if `non_recurrent_fn` is
  specified.
  """

  def __init__(self,
               num_units,
               tied=False,
               non_recurrent_fn=None,
               forget_bias=1,
               state_is_tuple=True,
               output_is_tuple=True):
    def cell_fn(n):
      return rnn.BasicLSTMCell(num_units=n, forget_bias=forget_bias)
    super(Grid2BasicLSTMCell, self).__init__(
        num_units=num_units,
        num_dims=2,
        input_dims=0,
        output_dims=0,
        priority_dims=0,
        tied=tied,
        non_recurrent_dims=None if non_recurrent_fn is None else 0,
        cell_fn=cell_fn,
        non_recurrent_fn=non_recurrent_fn,
        state_is_tuple=state_is_tuple,
        output_is_tuple=output_is_tuple)


class Grid1LSTMCell(GridRNNCell):
  """1D LSTM cell.

  This is different from Grid1BasicLSTMCell because it gives options to
  specify the forget bias and enabling peepholes.
  """

  def __init__(self,
               num_units,
               use_peepholes=False,
               forget_bias=1.0,
               state_is_tuple=True,
               output_is_tuple=True):

    def cell_fn(n):
      return rnn.LSTMCell(
          num_units=n, forget_bias=forget_bias, use_peepholes=use_peepholes)

    super(Grid1LSTMCell, self).__init__(
        num_units=num_units,
        num_dims=1,
        input_dims=0,
        output_dims=0,
        priority_dims=0,
        cell_fn=cell_fn,
        state_is_tuple=state_is_tuple,
        output_is_tuple=output_is_tuple)


class Grid2LSTMCell(GridRNNCell):
  """2D LSTM cell.

    This creates a 2D cell which receives input and gives output in the first
    dimension.
    The first dimension can optionally be non-recurrent if `non_recurrent_fn` is
    specified.
  """

  def __init__(self,
               num_units,
               tied=False,
               non_recurrent_fn=None,
               use_peepholes=False,
               forget_bias=1.0,
               state_is_tuple=True,
               output_is_tuple=True):

    def cell_fn(n):
      return rnn.LSTMCell(
          num_units=n, forget_bias=forget_bias, use_peepholes=use_peepholes)

    super(Grid2LSTMCell, self).__init__(
        num_units=num_units,
        num_dims=2,
        input_dims=0,
        output_dims=0,
        priority_dims=0,
        tied=tied,
        non_recurrent_dims=None if non_recurrent_fn is None else 0,
        cell_fn=cell_fn,
        non_recurrent_fn=non_recurrent_fn,
        state_is_tuple=state_is_tuple,
        output_is_tuple=output_is_tuple)


class Grid3LSTMCell(GridRNNCell):
  """3D BasicLSTM cell.

    This creates a 2D cell which receives input and gives output in the first
    dimension.
    The first dimension can optionally be non-recurrent if `non_recurrent_fn` is
    specified.
    The second and third dimensions are LSTM.
  """

  def __init__(self,
               num_units,
               tied=False,
               non_recurrent_fn=None,
               use_peepholes=False,
               forget_bias=1.0,
               state_is_tuple=True,
               output_is_tuple=True):

    def cell_fn(n):
      return rnn.LSTMCell(
          num_units=n, forget_bias=forget_bias, use_peepholes=use_peepholes)

    super(Grid3LSTMCell, self).__init__(
        num_units=num_units,
        num_dims=3,
        input_dims=0,
        output_dims=0,
        priority_dims=0,
        tied=tied,
        non_recurrent_dims=None if non_recurrent_fn is None else 0,
        cell_fn=cell_fn,
        non_recurrent_fn=non_recurrent_fn,
        state_is_tuple=state_is_tuple,
        output_is_tuple=output_is_tuple)


class Grid2GRUCell(GridRNNCell):
  """2D LSTM cell.

    This creates a 2D cell which receives input and gives output in the first
    dimension.
    The first dimension can optionally be non-recurrent if `non_recurrent_fn` is
    specified.
  """

  def __init__(self,
               num_units,
               tied=False,
               non_recurrent_fn=None,
               state_is_tuple=True,
               output_is_tuple=True):
    super(Grid2GRUCell, self).__init__(
        num_units=num_units,
        num_dims=2,
        input_dims=0,
        output_dims=0,
        priority_dims=0,
        tied=tied,
        non_recurrent_dims=None if non_recurrent_fn is None else 0,
        cell_fn=lambda n: rnn.GRUCell(num_units=n),
        non_recurrent_fn=non_recurrent_fn,
        state_is_tuple=state_is_tuple,
        output_is_tuple=output_is_tuple)


# Helpers

_GridRNNDimension = namedtuple('_GridRNNDimension', [
    'idx', 'is_input', 'is_output', 'is_priority', 'non_recurrent_fn'
])

_GridRNNConfig = namedtuple('_GridRNNConfig',
                            ['num_dims', 'dims', 'inputs', 'outputs',
                             'recurrents', 'priority', 'non_priority', 'tied',
                             'num_units'])


def _parse_rnn_config(num_dims, ls_input_dims, ls_output_dims, ls_priority_dims,
                      ls_non_recurrent_dims, non_recurrent_fn, tied, num_units):
  def check_dim_list(ls):
    if ls is None:
      ls = []
    if not isinstance(ls, (list, tuple)):
      ls = [ls]
    ls = sorted(set(ls))
    if any(_ < 0 or _ >= num_dims for _ in ls):
      raise ValueError('Invalid dims: {}. Must be in [0, {})'.format(ls,
                                                                     num_dims))
    return ls

  input_dims = check_dim_list(ls_input_dims)
  output_dims = check_dim_list(ls_output_dims)
  priority_dims = check_dim_list(ls_priority_dims)
  non_recurrent_dims = check_dim_list(ls_non_recurrent_dims)

  rnn_dims = []
  for i in range(num_dims):
    rnn_dims.append(
        _GridRNNDimension(
            idx=i,
            is_input=(i in input_dims),
            is_output=(i in output_dims),
            is_priority=(i in priority_dims),
            non_recurrent_fn=non_recurrent_fn
            if i in non_recurrent_dims else None))
  return _GridRNNConfig(
      num_dims=num_dims,
      dims=rnn_dims,
      inputs=input_dims,
      outputs=output_dims,
      recurrents=[x for x in range(num_dims) if x not in non_recurrent_dims],
      priority=priority_dims,
      non_priority=[x for x in range(num_dims) if x not in priority_dims],
      tied=tied,
      num_units=num_units)


def _propagate(dim_indices, conf, cells, c_prev, m_prev, new_output, new_state,
               first_call):
  """Propagates through all the cells in dim_indices dimensions.
  """
  if len(dim_indices) == 0:
    return

  # Because of the way RNNCells are implemented, we take the last dimension
  # (H_{N-1}) out and feed it as the state of the RNN cell
  # (in `last_dim_output`).
  # The input of the cell (H_0 to H_{N-2}) are concatenated into `cell_inputs`
  if conf.num_dims > 1:
    ls_cell_inputs = [None] * (conf.num_dims - 1)
    for d in conf.dims[:-1]:
      if new_output[d.idx] is None:
        ls_cell_inputs[d.idx] = m_prev[d.idx]
      else:
        ls_cell_inputs[d.idx] = new_output[d.idx]
    cell_inputs = array_ops.concat(ls_cell_inputs, 1)
  else:
    cell_inputs = array_ops.zeros([m_prev[0].get_shape().as_list()[0], 0],
                                  m_prev[0].dtype)

  last_dim_output = (new_output[-1]
                     if new_output[-1] is not None else m_prev[-1])

  for i in dim_indices:
    d = conf.dims[i]
    if d.non_recurrent_fn:
      if conf.num_dims > 1:
        linear_args = array_ops.concat([cell_inputs, last_dim_output], 1)
      else:
        linear_args = last_dim_output
      with vs.variable_scope('non_recurrent' if conf.tied else
                             'non_recurrent/cell_{}'.format(i)):
        if conf.tied and not (first_call and i == dim_indices[0]):
          vs.get_variable_scope().reuse_variables()

        new_output[d.idx] = layers.fully_connected(
            linear_args,
            num_outputs=conf.num_units,
            activation_fn=d.non_recurrent_fn,
            weights_initializer=(vs.get_variable_scope().initializer or
                                 layers.initializers.xavier_initializer),
            weights_regularizer=vs.get_variable_scope().regularizer)
    else:
      if c_prev[i] is not None:
        cell_state = (c_prev[i], last_dim_output)
      else:
        # for GRU/RNN, the state is just the previous output
        cell_state = last_dim_output

      with vs.variable_scope('recurrent' if conf.tied else
                             'recurrent/cell_{}'.format(i)):
        if conf.tied and not (first_call and i == dim_indices[0]):
          vs.get_variable_scope().reuse_variables()
        cell = cells[i]
        new_output[d.idx], new_state[d.idx] = cell(cell_inputs, cell_state)