aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/gan/python/eval/python/sliced_wasserstein_impl.py
blob: 4b10bc0f8e607c02763d8ea622d6f8f2572c586d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of Sliced Wasserstein Distance.

Proposed in https://arxiv.org/abs/1710.10196 and the official Theano
implementation that we used as reference can be found here:
https://github.com/tkarras/progressive_growing_of_gans

Note: this is not an exact distance but an approximation through random
projections.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import script_ops

__all__ = ['sliced_wasserstein_distance']
_GAUSSIAN_FILTER = np.float32([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [
    6, 24, 36, 24, 6
], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]]).reshape([5, 5, 1, 1]) / 256.0


def _laplacian_pyramid(batch, num_levels):
  """Compute a Laplacian pyramid.

  Args:
      batch: (tensor) The batch of images (batch, height, width, channels).
      num_levels: (int) Desired number of hierarchical levels.
  Returns:
      List of tensors from the highest to lowest resolution.
  """
  gaussian_filter = constant_op.constant(_GAUSSIAN_FILTER)

  def spatial_conv(batch, gain):
    s = array_ops.shape(batch)
    padded = array_ops.pad(batch, [[0, 0], [2, 2], [2, 2], [0, 0]], 'REFLECT')
    xt = array_ops.transpose(padded, [0, 3, 1, 2])
    xt = array_ops.reshape(xt, [s[0] * s[3], s[1] + 4, s[2] + 4, 1])
    conv_out = nn_ops.conv2d(xt, gaussian_filter * gain, [1] * 4, 'VALID')
    conv_xt = array_ops.reshape(conv_out, [s[0], s[3], s[1], s[2]])
    conv_xt = array_ops.transpose(conv_xt, [0, 2, 3, 1])
    return conv_xt

  def pyr_down(batch):  # matches cv2.pyrDown()
    return spatial_conv(batch, 1)[:, ::2, ::2]

  def pyr_up(batch):  # matches cv2.pyrUp()
    s = array_ops.shape(batch)
    zeros = array_ops.zeros([3 * s[0], s[1], s[2], s[3]])
    res = array_ops.concat([batch, zeros], 0)
    res = array_ops.batch_to_space(res, crops=[[0, 0], [0, 0]], block_size=2)
    res = spatial_conv(res, 4)
    return res

  pyramid = [math_ops.to_float(batch)]
  for _ in range(1, num_levels):
    pyramid.append(pyr_down(pyramid[-1]))
    pyramid[-2] -= pyr_up(pyramid[-1])
  return pyramid


def _batch_to_patches(batch, patches_per_image, patch_size):
  """Extract patches from a batch.

  Args:
      batch: (tensor) The batch of images (batch, height, width, channels).
      patches_per_image: (int) Number of patches to extract per image.
      patch_size: (int) Size of the patches (size, size, channels) to extract.
  Returns:
      Tensor (batch*patches_per_image, patch_size, patch_size, channels) of
      patches.
  """

  def py_func_random_patches(batch):
    """Numpy wrapper."""
    batch_size, height, width, channels = batch.shape
    patch_count = patches_per_image * batch_size
    hs = patch_size // 2
    # Randomly pick patches.
    patch_id, y, x, chan = np.ogrid[0:patch_count, -hs:hs + 1, -hs:hs + 1, 0:3]
    img_id = patch_id // patches_per_image
    # pylint: disable=g-no-augmented-assignment
    # Need explicit addition for broadcast to work properly.
    y = y + np.random.randint(hs, height - hs, size=(patch_count, 1, 1, 1))
    x = x + np.random.randint(hs, width - hs, size=(patch_count, 1, 1, 1))
    # pylint: enable=g-no-augmented-assignment
    idx = ((img_id * height + y) * width + x) * channels + chan
    patches = batch.flat[idx]
    return patches

  patches = script_ops.py_func(
      py_func_random_patches, [batch], batch.dtype, stateful=False)
  return patches


def _normalize_patches(patches):
  """Normalize patches by their mean and standard deviation.

  Args:
      patches: (tensor) The batch of patches (batch, size, size, channels).
  Returns:
      Tensor (batch, size, size, channels) of the normalized patches.
  """
  patches = array_ops.concat(patches, 0)
  mean, variance = nn.moments(patches, [1, 2, 3], keep_dims=True)
  patches = (patches - mean) / math_ops.sqrt(variance)
  return array_ops.reshape(patches, [array_ops.shape(patches)[0], -1])


def _sort_rows(matrix, num_rows):
  """Sort matrix rows by the last column.

  Args:
      matrix: a matrix of values (row,col).
      num_rows: (int) number of sorted rows to return from the matrix.
  Returns:
      Tensor (num_rows, col) of the sorted matrix top K rows.
  """
  tmatrix = array_ops.transpose(matrix, [1, 0])
  sorted_tmatrix = nn_ops.top_k(tmatrix, num_rows)[0]
  return array_ops.transpose(sorted_tmatrix, [1, 0])


def _sliced_wasserstein(a, b, random_sampling_count, random_projection_dim):
  """Compute the approximate sliced Wasserstein distance.

  Args:
      a: (matrix) Distribution "a" of samples (row, col).
      b: (matrix) Distribution "b" of samples (row, col).
      random_sampling_count: (int) Number of random projections to average.
      random_projection_dim: (int) Dimension of the random projection space.
  Returns:
      Float containing the approximate distance between "a" and "b".
  """
  s = array_ops.shape(a)
  means = []
  for _ in range(random_sampling_count):
    # Random projection matrix.
    proj = random_ops.random_normal(
        [array_ops.shape(a)[1], random_projection_dim])
    proj *= math_ops.rsqrt(
        math_ops.reduce_sum(math_ops.square(proj), 0, keep_dims=True))
    # Project both distributions and sort them.
    proj_a = math_ops.matmul(a, proj)
    proj_b = math_ops.matmul(b, proj)
    proj_a = _sort_rows(proj_a, s[0])
    proj_b = _sort_rows(proj_b, s[0])
    # Pairwise Wasserstein distance.
    wdist = math_ops.reduce_mean(math_ops.abs(proj_a - proj_b))
    means.append(wdist)
  return math_ops.reduce_mean(means)


def _sliced_wasserstein_svd(a, b):
  """Compute the approximate sliced Wasserstein distance using an SVD.

  This is not part of the paper, it's a variant with possibly more accurate
  measure.

  Args:
      a: (matrix) Distribution "a" of samples (row, col).
      b: (matrix) Distribution "b" of samples (row, col).
  Returns:
      Float containing the approximate distance between "a" and "b".
  """
  s = array_ops.shape(a)
  # Random projection matrix.
  sig, u = linalg_ops.svd(array_ops.concat([a, b], 0))[:2]
  proj_a, proj_b = array_ops.split(u * sig, 2, axis=0)
  proj_a = _sort_rows(proj_a[:, ::-1], s[0])
  proj_b = _sort_rows(proj_b[:, ::-1], s[0])
  # Pairwise Wasserstein distance.
  wdist = math_ops.reduce_mean(math_ops.abs(proj_a - proj_b))
  return wdist


def sliced_wasserstein_distance(real_images,
                                fake_images,
                                resolution_min=16,
                                patches_per_image=64,
                                patch_size=7,
                                random_sampling_count=1,
                                random_projection_dim=7 * 7 * 3,
                                use_svd=False):
  """Compute the Wasserstein distance between two distributions of images.

  Note that measure vary with the number of images. Use 8192 images to get
  numbers comparable to the ones in the original paper.

  Args:
      real_images: (tensor) Real images (batch, height, width, channels).
      fake_images: (tensor) Fake images (batch, height, width, channels).
      resolution_min: (int) Minimum resolution for the Laplacian pyramid.
      patches_per_image: (int) Number of patches to extract per image per
        Laplacian level.
      patch_size: (int) Width of a square patch.
      random_sampling_count: (int) Number of random projections to average.
      random_projection_dim: (int) Dimension of the random projection space.
      use_svd: experimental method to compute a more accurate distance.
  Returns:
      List of tuples (distance_real, distance_fake) for each level of the
      Laplacian pyramid from the highest resolution to the lowest.
        distance_real is the Wasserstein distance between real images
        distance_fake is the Wasserstein distance between real and fake images.
  Raises:
      ValueError: If the inputs shapes are incorrect. Input tensor dimensions
      (batch, height, width, channels) are expected to be known at graph
      construction time. In addition height and width must be the same and the
      number of colors should be exactly 3. Real and fake images must have the
      same size.
  """
  height = real_images.shape[1]
  real_images.shape.assert_is_compatible_with([None, None, height, 3])
  fake_images.shape.assert_is_compatible_with(real_images.shape)

  # Select resolutions.
  resolution_full = int(height)
  resolution_min = min(resolution_min, resolution_full)
  resolution_max = resolution_full
  # Base loss of detail.
  resolutions = [
      2**i
      for i in range(
          int(np.log2(resolution_max)),
          int(np.log2(resolution_min)) - 1, -1)
  ]

  # Gather patches for each level of the Laplacian pyramids.
  patches_real, patches_fake, patches_test = (
      [[] for _ in resolutions] for _ in range(3))
  for lod, level in enumerate(
      _laplacian_pyramid(real_images, len(resolutions))):
    patches_real[lod].append(
        _batch_to_patches(level, patches_per_image, patch_size))
    patches_test[lod].append(
        _batch_to_patches(level, patches_per_image, patch_size))

  for lod, level in enumerate(
      _laplacian_pyramid(fake_images, len(resolutions))):
    patches_fake[lod].append(
        _batch_to_patches(level, patches_per_image, patch_size))

  for lod in range(len(resolutions)):
    for patches in [patches_real, patches_test, patches_fake]:
      patches[lod] = _normalize_patches(patches[lod])

  # Evaluate scores.
  scores = []
  for lod in range(len(resolutions)):
    if not use_svd:
      scores.append(
          (_sliced_wasserstein(patches_real[lod], patches_test[lod],
                               random_sampling_count, random_projection_dim),
           _sliced_wasserstein(patches_real[lod], patches_fake[lod],
                               random_sampling_count, random_projection_dim)))
    else:
      scores.append(
          (_sliced_wasserstein_svd(patches_real[lod], patches_test[lod]),
           _sliced_wasserstein_svd(patches_real[lod], patches_fake[lod])))
  return scores