aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/feature_column/python/feature_column/sequence_feature_column.py
blob: 84a413c7910ee66d8632dbd31150122bfd5d27bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Experimental methods for tf.feature_column sequence input."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function


import collections


from tensorflow.python.feature_column import feature_column as fc
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import parsing_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops import variable_scope

# pylint: disable=protected-access
# TODO(b/73827486): Support SequenceExample.


def sequence_input_layer(
    features,
    feature_columns,
    weight_collections=None,
    trainable=True):
  """"Builds input layer for sequence input.

  All `feature_columns` must be sequence dense columns with the same
  `sequence_length`. The output of this method can be fed into sequence
  networks, such as RNN.

  The output of this method is a 3D `Tensor` of shape `[batch_size, T, D]`.
  `T` is the maximum sequence length for this batch, which could differ from
  batch to batch.

  If multiple `feature_columns` are given with `Di` `num_elements` each, their
  outputs are concatenated. So, the final `Tensor` has shape
  `[batch_size, T, D0 + D1 + ... + Dn]`.

  Example:

  ```python
  rating = sequence_numeric_column('rating')
  watches = sequence_categorical_column_with_identity(
      'watches', num_buckets=1000)
  watches_embedding = embedding_column(watches, dimension=10)
  columns = [rating, watches]

  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  input_layer, sequence_length = sequence_input_layer(features, columns)

  rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
  outputs, state = tf.nn.dynamic_rnn(
      rnn_cell, inputs=input_layer, sequence_length=sequence_length)
  ```

  Args:
    features: A dict mapping keys to tensors.
    feature_columns: An iterable of dense sequence columns. Valid columns are
      - `embedding_column` that wraps a `sequence_categorical_column_with_*`
      - `sequence_numeric_column`.
    weight_collections: A list of collection names to which the Variable will be
      added. Note that variables will also be added to collections
      `tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`.
    trainable: If `True` also add the variable to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES`.

  Returns:
    An `(input_layer, sequence_length)` tuple where:
    - input_layer: A float `Tensor` of shape `[batch_size, T, D]`.
        `T` is the maximum sequence length for this batch, which could differ
        from batch to batch. `D` is the sum of `num_elements` for all
        `feature_columns`.
    - sequence_length: An int `Tensor` of shape `[batch_size]`. The sequence
        length for each example.

  Raises:
    ValueError: If any of the `feature_columns` is the wrong type.
  """
  feature_columns = fc._normalize_feature_columns(feature_columns)
  for c in feature_columns:
    if not isinstance(c, fc._SequenceDenseColumn):
      raise ValueError(
          'All feature_columns must be of type _SequenceDenseColumn. '
          'You can wrap a sequence_categorical_column with an embedding_column '
          'or indicator_column. '
          'Given (type {}): {}'.format(type(c), c))

  with variable_scope.variable_scope(
      None, default_name='sequence_input_layer', values=features.values()):
    builder = fc._LazyBuilder(features)
    output_tensors = []
    sequence_lengths = []
    ordered_columns = []
    for column in sorted(feature_columns, key=lambda x: x.name):
      ordered_columns.append(column)
      with variable_scope.variable_scope(
          None, default_name=column._var_scope_name):
        dense_tensor, sequence_length = column._get_sequence_dense_tensor(
            builder,
            weight_collections=weight_collections,
            trainable=trainable)
        # Flattens the final dimension to produce a 3D Tensor.
        num_elements = column._variable_shape.num_elements()
        shape = array_ops.shape(dense_tensor)
        output_tensors.append(
            array_ops.reshape(
                dense_tensor,
                shape=array_ops.concat([shape[:2], [num_elements]], axis=0)))
        sequence_lengths.append(sequence_length)
    fc._verify_static_batch_size_equality(output_tensors, ordered_columns)
    fc._verify_static_batch_size_equality(sequence_lengths, ordered_columns)
    sequence_length = _assert_all_equal_and_return(sequence_lengths)
    return array_ops.concat(output_tensors, -1), sequence_length


def sequence_categorical_column_with_identity(
    key, num_buckets, default_value=None):
  """Returns a feature column that represents sequences of integers.

  Pass this to `embedding_column` or `indicator_column` to convert sequence
  categorical data into dense representation for input to sequence NN, such as
  RNN.

  Example:

  ```python
  watches = sequence_categorical_column_with_identity(
      'watches', num_buckets=1000)
  watches_embedding = embedding_column(watches, dimension=10)
  columns = [watches_embedding]

  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  input_layer, sequence_length = sequence_input_layer(features, columns)

  rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
  outputs, state = tf.nn.dynamic_rnn(
      rnn_cell, inputs=input_layer, sequence_length=sequence_length)
  ```

  Args:
    key: A unique string identifying the input feature.
    num_buckets: Range of inputs. Namely, inputs are expected to be in the
      range `[0, num_buckets)`.
    default_value: If `None`, this column's graph operations will fail for
      out-of-range inputs. Otherwise, this value must be in the range
      `[0, num_buckets)`, and will replace out-of-range inputs.

  Returns:
    A `_SequenceCategoricalColumn`.

  Raises:
    ValueError: if `num_buckets` is less than one.
    ValueError: if `default_value` is not in range `[0, num_buckets)`.
  """
  return fc._SequenceCategoricalColumn(
      fc.categorical_column_with_identity(
          key=key,
          num_buckets=num_buckets,
          default_value=default_value))


def sequence_categorical_column_with_hash_bucket(
    key, hash_bucket_size, dtype=dtypes.string):
  """A sequence of categorical terms where ids are set by hashing.

  Pass this to `embedding_column` or `indicator_column` to convert sequence
  categorical data into dense representation for input to sequence NN, such as
  RNN.

  Example:

  ```python
  tokens = sequence_categorical_column_with_hash_bucket(
      'tokens', hash_bucket_size=1000)
  tokens_embedding = embedding_column(tokens, dimension=10)
  columns = [tokens_embedding]

  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  input_layer, sequence_length = sequence_input_layer(features, columns)

  rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
  outputs, state = tf.nn.dynamic_rnn(
      rnn_cell, inputs=input_layer, sequence_length=sequence_length)
  ```

  Args:
    key: A unique string identifying the input feature.
    hash_bucket_size: An int > 1. The number of buckets.
    dtype: The type of features. Only string and integer types are supported.

  Returns:
    A `_SequenceCategoricalColumn`.

  Raises:
    ValueError: `hash_bucket_size` is not greater than 1.
    ValueError: `dtype` is neither string nor integer.
  """
  return fc._SequenceCategoricalColumn(
      fc.categorical_column_with_hash_bucket(
          key=key,
          hash_bucket_size=hash_bucket_size,
          dtype=dtype))


def sequence_categorical_column_with_vocabulary_file(
    key, vocabulary_file, vocabulary_size=None, num_oov_buckets=0,
    default_value=None, dtype=dtypes.string):
  """A sequence of categorical terms where ids use a vocabulary file.

  Pass this to `embedding_column` or `indicator_column` to convert sequence
  categorical data into dense representation for input to sequence NN, such as
  RNN.

  Example:

  ```python
  states = sequence_categorical_column_with_vocabulary_file(
      key='states', vocabulary_file='/us/states.txt', vocabulary_size=50,
      num_oov_buckets=5)
  states_embedding = embedding_column(states, dimension=10)
  columns = [states_embedding]

  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  input_layer, sequence_length = sequence_input_layer(features, columns)

  rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
  outputs, state = tf.nn.dynamic_rnn(
      rnn_cell, inputs=input_layer, sequence_length=sequence_length)
  ```

  Args:
    key: A unique string identifying the input feature.
    vocabulary_file: The vocabulary file name.
    vocabulary_size: Number of the elements in the vocabulary. This must be no
      greater than length of `vocabulary_file`, if less than length, later
      values are ignored. If None, it is set to the length of `vocabulary_file`.
    num_oov_buckets: Non-negative integer, the number of out-of-vocabulary
      buckets. All out-of-vocabulary inputs will be assigned IDs in the range
      `[vocabulary_size, vocabulary_size+num_oov_buckets)` based on a hash of
      the input value. A positive `num_oov_buckets` can not be specified with
      `default_value`.
    default_value: The integer ID value to return for out-of-vocabulary feature
      values, defaults to `-1`. This can not be specified with a positive
      `num_oov_buckets`.
    dtype: The type of features. Only string and integer types are supported.

  Returns:
    A `_SequenceCategoricalColumn`.

  Raises:
    ValueError: `vocabulary_file` is missing or cannot be opened.
    ValueError: `vocabulary_size` is missing or < 1.
    ValueError: `num_oov_buckets` is a negative integer.
    ValueError: `num_oov_buckets` and `default_value` are both specified.
    ValueError: `dtype` is neither string nor integer.
  """
  return fc._SequenceCategoricalColumn(
      fc.categorical_column_with_vocabulary_file(
          key=key,
          vocabulary_file=vocabulary_file,
          vocabulary_size=vocabulary_size,
          num_oov_buckets=num_oov_buckets,
          default_value=default_value,
          dtype=dtype))


def sequence_categorical_column_with_vocabulary_list(
    key, vocabulary_list, dtype=None, default_value=-1, num_oov_buckets=0):
  """A sequence of categorical terms where ids use an in-memory list.

  Pass this to `embedding_column` or `indicator_column` to convert sequence
  categorical data into dense representation for input to sequence NN, such as
  RNN.

  Example:

  ```python
  colors = sequence_categorical_column_with_vocabulary_list(
      key='colors', vocabulary_list=('R', 'G', 'B', 'Y'),
      num_oov_buckets=2)
  colors_embedding = embedding_column(colors, dimension=3)
  columns = [colors_embedding]

  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  input_layer, sequence_length = sequence_input_layer(features, columns)

  rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
  outputs, state = tf.nn.dynamic_rnn(
      rnn_cell, inputs=input_layer, sequence_length=sequence_length)
  ```

  Args:
    key: A unique string identifying the input feature.
    vocabulary_list: An ordered iterable defining the vocabulary. Each feature
      is mapped to the index of its value (if present) in `vocabulary_list`.
      Must be castable to `dtype`.
    dtype: The type of features. Only string and integer types are supported.
      If `None`, it will be inferred from `vocabulary_list`.
    default_value: The integer ID value to return for out-of-vocabulary feature
      values, defaults to `-1`. This can not be specified with a positive
      `num_oov_buckets`.
    num_oov_buckets: Non-negative integer, the number of out-of-vocabulary
      buckets. All out-of-vocabulary inputs will be assigned IDs in the range
      `[len(vocabulary_list), len(vocabulary_list)+num_oov_buckets)` based on a
      hash of the input value. A positive `num_oov_buckets` can not be specified
      with `default_value`.

  Returns:
    A `_SequenceCategoricalColumn`.

  Raises:
    ValueError: if `vocabulary_list` is empty, or contains duplicate keys.
    ValueError: `num_oov_buckets` is a negative integer.
    ValueError: `num_oov_buckets` and `default_value` are both specified.
    ValueError: if `dtype` is not integer or string.
  """
  return fc._SequenceCategoricalColumn(
      fc.categorical_column_with_vocabulary_list(
          key=key,
          vocabulary_list=vocabulary_list,
          dtype=dtype,
          default_value=default_value,
          num_oov_buckets=num_oov_buckets))


def sequence_numeric_column(
    key,
    shape=(1,),
    default_value=0.,
    dtype=dtypes.float32):
  """Returns a feature column that represents sequences of numeric data.

  Example:

  ```python
  temperature = sequence_numeric_column('temperature')
  columns = [temperature]

  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  input_layer, sequence_length = sequence_input_layer(features, columns)

  rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
  outputs, state = tf.nn.dynamic_rnn(
      rnn_cell, inputs=input_layer, sequence_length=sequence_length)
  ```

  Args:
    key: A unique string identifying the input features.
    shape: The shape of the input data per sequence id. E.g. if `shape=(2,)`,
      each example must contain `2 * sequence_length` values.
    default_value: A single value compatible with `dtype` that is used for
      padding the sparse data into a dense `Tensor`.
    dtype: The type of values.

  Returns:
    A `_SequenceNumericColumn`.

  Raises:
    TypeError: if any dimension in shape is not an int.
    ValueError: if any dimension in shape is not a positive integer.
    ValueError: if `dtype` is not convertible to `tf.float32`.
  """
  shape = fc._check_shape(shape=shape, key=key)
  if not (dtype.is_integer or dtype.is_floating):
    raise ValueError('dtype must be convertible to float. '
                     'dtype: {}, key: {}'.format(dtype, key))

  return _SequenceNumericColumn(
      key,
      shape=shape,
      default_value=default_value,
      dtype=dtype)


def _assert_all_equal_and_return(tensors, name=None):
  """Asserts that all tensors are equal and returns the first one."""
  with ops.name_scope(name, 'assert_all_equal', values=tensors):
    if len(tensors) == 1:
      return tensors[0]
    assert_equal_ops = []
    for t in tensors[1:]:
      assert_equal_ops.append(check_ops.assert_equal(tensors[0], t))
    with ops.control_dependencies(assert_equal_ops):
      return array_ops.identity(tensors[0])


class _SequenceNumericColumn(
    fc._SequenceDenseColumn,
    collections.namedtuple(
        '_SequenceNumericColumn',
        ['key', 'shape', 'default_value', 'dtype'])):
  """Represents sequences of numeric data."""

  @property
  def name(self):
    return self.key

  @property
  def _parse_example_spec(self):
    return {self.key: parsing_ops.VarLenFeature(self.dtype)}

  def _transform_feature(self, inputs):
    return inputs.get(self.key)

  @property
  def _variable_shape(self):
    return tensor_shape.TensorShape(self.shape)

  def _get_sequence_dense_tensor(
      self, inputs, weight_collections=None, trainable=None):
    # Do nothing with weight_collections and trainable since no variables are
    # created in this function.
    del weight_collections
    del trainable
    sp_tensor = inputs.get(self)
    dense_tensor = sparse_ops.sparse_tensor_to_dense(
        sp_tensor, default_value=self.default_value)
    # Reshape into [batch_size, T, variable_shape].
    dense_shape = array_ops.concat(
        [array_ops.shape(dense_tensor)[:1], [-1], self._variable_shape],
        axis=0)
    dense_tensor = array_ops.reshape(dense_tensor, shape=dense_shape)
    sequence_length = fc._sequence_length_from_sparse_tensor(
        sp_tensor, num_elements=self._variable_shape.num_elements())
    return fc._SequenceDenseColumn.TensorSequenceLengthPair(
        dense_tensor=dense_tensor, sequence_length=sequence_length)

# pylint: enable=protected-access