aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/factorization/python/ops/gmm_test.py
blob: 00a4734eb6d89cd02484f1c5161366377cc71208 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for ops.gmm."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.contrib.factorization.python.ops import gmm as gmm_lib
from tensorflow.contrib.learn.python.learn.estimators import kmeans
from tensorflow.contrib.learn.python.learn.estimators import run_config
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import random_seed as random_seed_lib
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import data_flow_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.platform import test
from tensorflow.python.training import queue_runner


class GMMTest(test.TestCase):

  def input_fn(self, batch_size=None, points=None):
    batch_size = batch_size or self.batch_size
    points = points if points is not None else self.points
    num_points = points.shape[0]

    def _fn():
      x = constant_op.constant(points)
      if batch_size == num_points:
        return x, None
      indices = random_ops.random_uniform(constant_op.constant([batch_size]),
                                          minval=0, maxval=num_points-1,
                                          dtype=dtypes.int32,
                                          seed=10)
      return array_ops.gather(x, indices), None
    return _fn

  def setUp(self):
    np.random.seed(3)
    random_seed_lib.set_random_seed(2)
    self.num_centers = 2
    self.num_dims = 2
    self.num_points = 4000
    self.batch_size = self.num_points
    self.true_centers = self.make_random_centers(self.num_centers,
                                                 self.num_dims)
    self.points, self.assignments = self.make_random_points(
        self.true_centers, self.num_points)

    # Use initial means from kmeans (just like scikit-learn does).
    clusterer = kmeans.KMeansClustering(num_clusters=self.num_centers)
    clusterer.fit(input_fn=lambda: (constant_op.constant(self.points), None),
                  steps=30)
    self.initial_means = clusterer.clusters()

  @staticmethod
  def make_random_centers(num_centers, num_dims):
    return np.round(
        np.random.rand(num_centers, num_dims).astype(np.float32) * 500)

  @staticmethod
  def make_random_points(centers, num_points):
    num_centers, num_dims = centers.shape
    assignments = np.random.choice(num_centers, num_points)
    offsets = np.round(
        np.random.randn(num_points, num_dims).astype(np.float32) * 20)
    points = centers[assignments] + offsets
    return (points, assignments)

  def test_weights(self):
    """Tests the shape of the weights."""
    gmm = gmm_lib.GMM(self.num_centers,
                      initial_clusters=self.initial_means,
                      random_seed=4,
                      config=run_config.RunConfig(tf_random_seed=2))
    gmm.fit(input_fn=self.input_fn(), steps=0)
    weights = gmm.weights()
    self.assertAllEqual(list(weights.shape), [self.num_centers])

  def test_clusters(self):
    """Tests the shape of the clusters."""
    gmm = gmm_lib.GMM(self.num_centers,
                      initial_clusters=self.initial_means,
                      random_seed=4,
                      config=run_config.RunConfig(tf_random_seed=2))
    gmm.fit(input_fn=self.input_fn(), steps=0)
    clusters = gmm.clusters()
    self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims])

  def test_fit(self):
    gmm = gmm_lib.GMM(self.num_centers,
                      initial_clusters='random',
                      random_seed=4,
                      config=run_config.RunConfig(tf_random_seed=2))
    gmm.fit(input_fn=self.input_fn(), steps=1)
    score1 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points),
                       steps=1)
    gmm.fit(input_fn=self.input_fn(), steps=10)
    score2 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points),
                       steps=1)
    self.assertLess(score1, score2)

  def test_infer(self):
    gmm = gmm_lib.GMM(self.num_centers,
                      initial_clusters=self.initial_means,
                      random_seed=4,
                      config=run_config.RunConfig(tf_random_seed=2))
    gmm.fit(input_fn=self.input_fn(), steps=60)
    clusters = gmm.clusters()

    # Make a small test set
    num_points = 40
    points, true_assignments = self.make_random_points(clusters, num_points)

    assignments = []
    for item in gmm.predict_assignments(
        input_fn=self.input_fn(points=points, batch_size=num_points)):
      assignments.append(item)
    assignments = np.ravel(assignments)
    self.assertAllEqual(true_assignments, assignments)

  def _compare_with_sklearn(self, cov_type):
    # sklearn version.
    iterations = 40
    np.random.seed(5)
    sklearn_assignments = np.asarray([0, 0, 1, 0, 0, 0, 1, 0, 0, 1])
    sklearn_means = np.asarray([[144.83417719, 254.20130341],
                                [274.38754816, 353.16074346]])
    sklearn_covs = np.asarray([[[395.0081194, -4.50389512],
                                [-4.50389512, 408.27543989]],
                               [[385.17484203, -31.27834935],
                                [-31.27834935, 391.74249925]]])

    # skflow version.
    gmm = gmm_lib.GMM(self.num_centers,
                      initial_clusters=self.initial_means,
                      covariance_type=cov_type,
                      config=run_config.RunConfig(tf_random_seed=2))
    gmm.fit(input_fn=self.input_fn(), steps=iterations)
    points = self.points[:10, :]
    skflow_assignments = []
    for item in gmm.predict_assignments(
        input_fn=self.input_fn(points=points, batch_size=10)):
      skflow_assignments.append(item)
    self.assertAllClose(sklearn_assignments,
                        np.ravel(skflow_assignments).astype(int))
    self.assertAllClose(sklearn_means, gmm.clusters())
    if cov_type == 'full':
      self.assertAllClose(sklearn_covs, gmm.covariances(), rtol=0.01)
    else:
      for d in [0, 1]:
        self.assertAllClose(
            np.diag(sklearn_covs[d]), gmm.covariances()[d, :], rtol=0.01)

  def test_compare_full(self):
    self._compare_with_sklearn('full')

  def test_compare_diag(self):
    self._compare_with_sklearn('diag')

  def test_random_input_large(self):
    # sklearn version.
    iterations = 5  # that should be enough to know whether this diverges
    np.random.seed(5)
    num_classes = 20
    x = np.array([[np.random.random() for _ in range(100)]
                  for _ in range(num_classes)], dtype=np.float32)

    # skflow version.
    gmm = gmm_lib.GMM(num_classes,
                      covariance_type='full',
                      config=run_config.RunConfig(tf_random_seed=2))

    def get_input_fn(x):
      def input_fn():
        return constant_op.constant(x.astype(np.float32)), None
      return input_fn

    gmm.fit(input_fn=get_input_fn(x), steps=iterations)
    self.assertFalse(np.isnan(gmm.clusters()).any())


class GMMTestQueues(test.TestCase):

  def input_fn(self):
    def _fn():
      queue = data_flow_ops.FIFOQueue(capacity=10,
                                      dtypes=dtypes.float32,
                                      shapes=[10, 3])
      enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32))
      queue_runner.add_queue_runner(queue_runner.QueueRunner(queue,
                                                             [enqueue_op]))
      return queue.dequeue(), None
    return _fn

  # This test makes sure that there are no deadlocks when using a QueueRunner.
  # Note that since cluster initialization is dependendent on inputs, if input
  # is generated using a QueueRunner, one has to make sure that these runners
  # are started before the initialization.
  def test_queues(self):
    gmm = gmm_lib.GMM(2, covariance_type='diag')
    gmm.fit(input_fn=self.input_fn(), steps=1)


if __name__ == '__main__':
  test.main()