aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/eager/python/examples/revnet/revnet_test.py
blob: 26b084752330ec6ccc3bbf34bcbfeb95a7429907 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for basic building blocks used in eager mode RevNet."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import gc
import time

import tensorflow as tf
from tensorflow.contrib.eager.python.examples.revnet import blocks_test
from tensorflow.contrib.eager.python.examples.revnet import config as config_
from tensorflow.contrib.eager.python.examples.revnet import revnet
from tensorflow.python.client import device_lib
tfe = tf.contrib.eager


def train_one_iter(model, inputs, labels, optimizer, global_step=None):
  """Train for one iteration."""
  grads, vars_, logits, loss = model.compute_gradients(
      inputs, labels, training=True)
  optimizer.apply_gradients(zip(grads, vars_), global_step=global_step)

  return logits, loss


class RevNetTest(tf.test.TestCase):

  def setUp(self):
    super(RevNetTest, self).setUp()
    config = config_.get_hparams_cifar_38()
    config.add_hparam("n_classes", 10)
    config.add_hparam("dataset", "cifar-10")
    # Reconstruction could cause numerical error, use double precision for tests
    config.dtype = tf.float64
    config.fused = False  # Fused batch norm does not support tf.float64
    shape = (config.batch_size,) + config.input_shape
    self.model = revnet.RevNet(config=config)
    self.x = tf.random_normal(shape=shape, dtype=tf.float64)
    self.t = tf.random_uniform(
        shape=[config.batch_size],
        minval=0,
        maxval=config.n_classes,
        dtype=tf.int64)
    self.config = config

  def tearDown(self):
    del self.model
    del self.x
    del self.t
    del self.config
    super(RevNetTest, self).tearDown()

  def test_call(self):
    """Test `call` function."""

    y, _ = self.model(self.x, training=False)
    self.assertEqual(y.shape, [self.config.batch_size, self.config.n_classes])

  def _check_grad_angle_combined(self, grads, grads_true):
    """Verify that the reconstructed gradients has correct direction.

    Due to numerical imprecision, the magnitude may be slightly different.
    Yet according to the paper, the angle should be roughly the same.

    Args:
      grads: list of gradients from reconstruction
      grads_true: list of true gradients
    """

    def _combine(gs):
      return [tf.reshape(g, [-1]) for g in gs]

    g1_all = tf.concat(_combine(grads), axis=0)
    g2_all = tf.concat(_combine(grads_true), axis=0)

    self.assertEqual(len(g1_all.shape), 1)
    self.assertEqual(len(g2_all.shape), 1)

    degree = blocks_test.compute_degree(g1_all, g2_all)
    self.assertLessEqual(degree, 1e0)

  def test_compute_gradients(self):
    """Test `compute_gradients` function."""
    self.model(self.x, training=False)  # Initialize model
    grads, vars_, logits, loss = self.model.compute_gradients(
        inputs=self.x, labels=self.t, training=True, l2_reg=True)
    self.assertTrue(isinstance(grads, list))
    self.assertTrue(isinstance(vars_, list))
    self.assertEqual(len(grads), len(vars_))
    for grad, var in zip(grads, vars_):
      self.assertEqual(grad.shape, var.shape)

    # Compare against the true gradient computed by the tape
    with tf.GradientTape() as tape:
      logits, _ = self.model(self.x, training=True)
      loss_true = self.model.compute_loss(logits=logits, labels=self.t)
    grads_true = tape.gradient(loss_true, vars_)
    self.assertAllClose(loss, loss_true)
    self.assertAllClose(grads, grads_true, rtol=1e-4, atol=1e-4)
    self._check_grad_angle_combined(grads, grads_true)

  def test_call_defun(self):
    """Test `call` function with defun."""
    y, _ = tfe.defun(self.model.call)(self.x, training=False)
    self.assertEqual(y.shape, [self.config.batch_size, self.config.n_classes])

  def test_compute_gradients_defun(self):
    """Test `compute_gradients` function with defun."""
    compute_gradients = tfe.defun(self.model.compute_gradients)
    grads, vars_, _, _ = compute_gradients(self.x, self.t, training=True)
    self.assertTrue(isinstance(grads, list))
    self.assertTrue(isinstance(vars_, list))
    self.assertEqual(len(grads), len(vars_))
    for grad, var in zip(grads, vars_):
      if grad is not None:
        self.assertEqual(grad.shape, var.shape)

  def test_training_graph(self):
    """Test model training in graph mode."""
    with tf.Graph().as_default():
      config = config_.get_hparams_cifar_38()
      config.add_hparam("n_classes", 10)
      config.add_hparam("dataset", "cifar-10")

      x = tf.random_normal(
          shape=(self.config.batch_size,) + self.config.input_shape)
      t = tf.random_uniform(
          shape=(self.config.batch_size,),
          minval=0,
          maxval=self.config.n_classes,
          dtype=tf.int32)
      global_step = tf.Variable(0., trainable=False)
      model = revnet.RevNet(config=config)
      grads_all, vars_all, _, _ = model.compute_gradients(x, t, training=True)
      optimizer = tf.train.AdamOptimizer(learning_rate=1e-3)
      train_op = optimizer.apply_gradients(
          zip(grads_all, vars_all), global_step=global_step)

      with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for _ in range(1):
          sess.run(train_op)


# Benchmark related
def device_and_data_format():
  return ("/gpu:0",
          "channels_first") if tf.test.is_gpu_available() else ("/cpu:0",
                                                                "channels_last")


def random_batch(batch_size, config):
  shape = (batch_size,) + config.input_shape
  images = tf.random_uniform(shape)
  labels = tf.random_uniform(
      [batch_size], minval=0, maxval=config.n_classes, dtype=tf.int32)

  return images, labels


class MockIterator(object):

  def __init__(self, tensors):
    self._tensors = [tf.identity(x) for x in tensors]

  def next(self):
    return self._tensors


class RevNetBenchmark(tf.test.Benchmark):
  """Eager and graph benchmarks for RevNet."""

  def _train_batch_sizes(self):
    """Shamelessly copied from `resnet50_test.py`.

    Note: This is targeted towards ImageNet. CIFAR-10 should allow more
    aggressive batch sizes.

    Returns:
      A tuple of possible batch sizes
    """
    for device in device_lib.list_local_devices():
      if tf.DeviceSpec.from_string(device.name).device_type == "GPU":
        if "K20" in device.physical_device_desc:
          return (16,)
        if "P100" in device.physical_device_desc:
          return (16, 32, 64)
      if tf.DeviceSpec.from_string(device.name).device_type == "TPU":
        return (32,)
    return (16, 32)

  def _force_device_sync(self):
    """Shamelessly copied from `resnet50_test.py`."""
    tf.constant(1.).cpu()

  def _report(self, label, start, num_iters, device, batch_size, data_format):
    avg_time = (time.time() - start) / num_iters
    dev = tf.DeviceSpec.from_string(device).device_type.lower()
    name = "%s_%s_batch_%d_%s" % (label, dev, batch_size, data_format)
    extras = {"examples_per_sec": batch_size / avg_time}
    self.report_benchmark(
        iters=num_iters, wall_time=avg_time, name=name, extras=extras)

  def _benchmark_eager_apply(self,
                             label,
                             device_and_format,
                             defun=False,
                             execution_mode=None,
                             compiled=False):
    config = config_.get_hparams_imagenet_56()
    with tfe.execution_mode(execution_mode):
      device, data_format = device_and_format
      model = revnet.RevNet(config=config)
      if defun:
        model.call = tfe.defun(model.call, compiled=compiled)
      batch_size = 64
      num_burn = 5
      num_iters = 10
      with tf.device(device):
        images, _ = random_batch(batch_size, config)
        for _ in range(num_burn):
          model(images, training=False)
        if execution_mode:
          tfe.async_wait()
        gc.collect()
        start = time.time()
        for _ in range(num_iters):
          model(images, training=False)
        if execution_mode:
          tfe.async_wait()
        self._report(label, start, num_iters, device, batch_size, data_format)

  def benchmark_eager_apply_sync(self):
    self._benchmark_eager_apply(
        "eager_apply_sync", device_and_data_format(), defun=False)

  def benchmark_eager_apply_async(self):
    self._benchmark_eager_apply(
        "eager_apply_async",
        device_and_data_format(),
        defun=False,
        execution_mode=tfe.ASYNC)

  def benchmark_eager_call_defun(self):
    self._benchmark_eager_apply(
        "eager_apply_with_defun", device_and_data_format(), defun=True)

  def _benchmark_eager_train(self,
                             label,
                             make_iterator,
                             device_and_format,
                             defun=False,
                             execution_mode=None,
                             compiled=False):
    config = config_.get_hparams_imagenet_56()
    with tfe.execution_mode(execution_mode):
      device, data_format = device_and_format
      for batch_size in self._train_batch_sizes():
        (images, labels) = random_batch(batch_size, config)
        model = revnet.RevNet(config=config)
        optimizer = tf.train.GradientDescentOptimizer(0.1)
        if defun:
          model.call = tfe.defun(model.call)

        num_burn = 3
        num_iters = 10
        with tf.device(device):
          iterator = make_iterator((images, labels))
          for _ in range(num_burn):
            (images, labels) = iterator.next()
            train_one_iter(model, images, labels, optimizer)
          if execution_mode:
            tfe.async_wait()
          self._force_device_sync()
          gc.collect()

          start = time.time()
          for _ in range(num_iters):
            (images, labels) = iterator.next()
            train_one_iter(model, images, labels, optimizer)
          if execution_mode:
            tfe.async_wait()
          self._force_device_sync()
          self._report(label, start, num_iters, device, batch_size, data_format)

  def benchmark_eager_train_sync(self):
    self._benchmark_eager_train(
        "eager_train_sync", MockIterator, device_and_data_format(), defun=False)

  def benchmark_eager_train_async(self):
    self._benchmark_eager_train(
        "eager_train_async",
        MockIterator,
        device_and_data_format(),
        defun=False,
        execution_mode=tfe.ASYNC)

  def benchmark_eager_train_defun(self):
    self._benchmark_eager_train(
        "eager_train", MockIterator, device_and_data_format(), defun=False)

  def benchmark_eager_train_datasets_with_defun(self):

    def make_iterator(tensors):
      with tf.device("/device:CPU:0"):
        ds = tf.data.Dataset.from_tensors(tensors).repeat()
      return tfe.Iterator(ds)

    self._benchmark_eager_train(
        "eager_train_dataset_with_defun",
        make_iterator,
        device_and_data_format(),
        defun=True)


if __name__ == "__main__":
  tf.enable_eager_execution()
  tf.test.main()