aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/eager/python/examples/l2hmc/l2hmc.py
blob: 729d8525fab31ee214178ca1bcb18dbd069f767a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""L2HMC compatible with TensorFlow's eager execution.

Reference [Generalizing Hamiltonian Monte Carlo with Neural
Networks](https://arxiv.org/pdf/1711.09268.pdf)

Code adapted from the released TensorFlow graph implementation by original
authors https://github.com/brain-research/l2hmc.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import numpy.random as npr
import tensorflow as tf
import tensorflow.contrib.eager as tfe
from tensorflow.contrib.eager.python.examples.l2hmc import neural_nets


class Dynamics(tf.keras.Model):
  """Dynamics engine of naive L2HMC sampler.

  Args:
    x_dim: dimensionality of observed data
    loglikelihood_fn: log-likelihood function of conditional probability
    n_steps: number of leapfrog steps within each transition
    eps: initial value learnable scale of step size
  """

  def __init__(self, x_dim, loglikelihood_fn, n_steps=25, eps=.1):
    super(Dynamics, self).__init__()

    self.x_dim = x_dim
    self.potential = loglikelihood_fn
    self.n_steps = n_steps

    self._construct_time()
    self._construct_masks()

    self.position_fn = neural_nets.GenericNet(x_dim, factor=2.)
    self.momentum_fn = neural_nets.GenericNet(x_dim, factor=1.)

    self.eps = tfe.Variable(
        initial_value=eps, name="eps", dtype=tf.float32, trainable=True)

  def apply_transition(self, position):
    """Propose a new state and perform the accept or reject step."""

    # Simulate dynamics both forward and backward;
    # Use sampled Bernoulli masks to compute the actual solutions
    position_f, momentum_f, accept_prob_f = self.transition_kernel(
        position, forward=True)
    position_b, momentum_b, accept_prob_b = self.transition_kernel(
        position, forward=False)

    # Decide direction uniformly
    forward_mask = tf.cast(
        tf.random_uniform(shape=[tf.shape(position)[0]]) > .5, tf.float32)
    backward_mask = 1. - forward_mask

    # Obtain proposed states
    position_post = (
        forward_mask[:, None] * position_f +
        backward_mask[:, None] * position_b)
    momentum_post = (
        forward_mask[:, None] * momentum_f +
        backward_mask[:, None] * momentum_b)

    # Probability of accepting the proposed states
    accept_prob = forward_mask * accept_prob_f + backward_mask * accept_prob_b

    # Accept or reject step
    accept_mask = tf.cast(
        accept_prob > tf.random_uniform(tf.shape(accept_prob)), tf.float32)
    reject_mask = 1. - accept_mask

    # Samples after accept/reject step
    position_out = (
        accept_mask[:, None] * position_post + reject_mask[:, None] * position)

    return position_post, momentum_post, accept_prob, position_out

  def transition_kernel(self, position, forward=True):
    """Transition kernel of augmented leapfrog integrator."""

    lf_fn = self._forward_lf if forward else self._backward_lf

    # Resample momentum
    momentum = tf.random_normal(tf.shape(position))
    position_post, momentum_post = position, momentum
    sumlogdet = 0.
    # Apply augmented leapfrog steps
    for i in range(self.n_steps):
      position_post, momentum_post, logdet = lf_fn(position_post, momentum_post,
                                                   i)
      sumlogdet += logdet

    accept_prob = self._compute_accept_prob(position, momentum, position_post,
                                            momentum_post, sumlogdet)

    return position_post, momentum_post, accept_prob

  def _forward_lf(self, position, momentum, i):
    """One forward augmented leapfrog step. See eq (5-6) in paper."""

    t = self._get_time(i)
    mask, mask_inv = self._get_mask(i)
    sumlogdet = 0.

    momentum, logdet = self._update_momentum_forward(position, momentum, t)
    sumlogdet += logdet

    position, logdet = self._update_position_forward(position, momentum, t,
                                                     mask)
    sumlogdet += logdet

    position, logdet = self._update_position_forward(position, momentum, t,
                                                     mask_inv)
    sumlogdet += logdet

    momentum, logdet = self._update_momentum_forward(position, momentum, t)
    sumlogdet += logdet

    return position, momentum, tf.reduce_sum(sumlogdet, axis=1)

  def _backward_lf(self, position, momentum, i):
    """One backward augmented leapfrog step. See Appendix A in paper."""

    # Reversed index/sinusoidal time
    t = self._get_time(self.n_steps - i - 1)
    mask, mask_inv = self._get_mask(self.n_steps - i - 1)
    sumlogdet = 0.

    momentum, logdet = self._update_momentum_backward(position, momentum, t)
    sumlogdet += logdet

    position, logdet = self._update_position_backward(position, momentum, t,
                                                      mask)
    sumlogdet += logdet

    position, logdet = self._update_position_backward(position, momentum, t,
                                                      mask_inv)
    sumlogdet += logdet

    momentum, logdet = self._update_momentum_backward(position, momentum, t)
    sumlogdet += logdet

    return position, momentum, tf.reduce_sum(sumlogdet, axis=1)

  def _update_momentum_forward(self, position, momentum, t):
    """Update v in the forward leapfrog step."""

    grad = self.grad_potential(position)
    scale, translation, transformed = self.momentum_fn([position, grad, t])
    scale *= .5 * self.eps
    transformed *= self.eps
    momentum = (
        momentum * tf.exp(scale) -
        .5 * self.eps * (tf.exp(transformed) * grad - translation))

    return momentum, scale

  def _update_position_forward(self, position, momentum, t, mask):
    """Update x in the forward leapfrog step."""

    mask_inv = 1. - mask
    scale, translation, transformed = self.position_fn(
        [momentum, mask * position, t])
    scale *= self.eps
    transformed *= self.eps
    position = (
        mask * position +
        mask_inv * (position * tf.exp(scale) + self.eps *
                    (tf.exp(transformed) * momentum + translation)))

    return position, mask_inv * scale

  def _update_momentum_backward(self, position, momentum, t):
    """Update v in the backward leapfrog step. Inverting the forward update."""

    grad = self.grad_potential(position)
    scale, translation, transformed = self.momentum_fn([position, grad, t])
    scale *= -.5 * self.eps
    transformed *= self.eps
    momentum = (
        tf.exp(scale) * (momentum + .5 * self.eps *
                         (tf.exp(transformed) * grad - translation)))

    return momentum, scale

  def _update_position_backward(self, position, momentum, t, mask):
    """Update x in the backward leapfrog step. Inverting the forward update."""

    mask_inv = 1. - mask
    scale, translation, transformed = self.position_fn(
        [momentum, mask_inv * position, t])
    scale *= -self.eps
    transformed *= self.eps
    position = (
        mask_inv * position + mask * tf.exp(scale) *
        (position - self.eps * tf.exp(transformed) * momentum + translation))

    return position, mask * scale

  def _compute_accept_prob(self, position, momentum, position_post,
                           momentum_post, sumlogdet):
    """Compute the prob of accepting the proposed state given old state."""

    old_hamil = self.hamiltonian(position, momentum)
    new_hamil = self.hamiltonian(position_post, momentum_post)

    return tf.exp(tf.minimum(old_hamil - new_hamil + sumlogdet, 0.))

  def _construct_time(self):
    """Convert leapfrog step index into sinusoidal time."""

    self.ts = []
    for i in range(self.n_steps):
      t = tf.constant(
          [
              np.cos(2 * np.pi * i / self.n_steps),
              np.sin(2 * np.pi * i / self.n_steps)
          ],
          dtype=tf.float32)
      self.ts.append(t[None, :])

  def _get_time(self, i):
    """Get sinusoidal time for i-th augmented leapfrog step."""

    return self.ts[i]

  def _construct_masks(self):
    """Construct different binary masks for different time steps."""

    self.masks = []
    for _ in range(self.n_steps):
      idx = npr.permutation(np.arange(self.x_dim))[:self.x_dim // 2]
      mask = np.zeros((self.x_dim,))
      mask[idx] = 1.
      mask = tf.constant(mask, dtype=tf.float32)
      self.masks.append(mask[None, :])

  def _get_mask(self, i):
    """Get binary masks for i-th augmented leapfrog step."""

    m = self.masks[i]
    return m, 1. - m

  def kinetic(self, v):
    """Compute the kinetic energy."""

    return .5 * tf.reduce_sum(v**2, axis=1)

  def hamiltonian(self, position, momentum):
    """Compute the overall Hamiltonian."""

    return self.potential(position) + self.kinetic(momentum)

  def grad_potential(self, position, check_numerics=True):
    """Get gradient of potential function at current location."""

    if not tf.executing_eagerly():
      # TODO(lxuechen): Change this to tfe.gradients_function when it works
      grad = tf.gradients(self.potential(position), position)[0]
    else:
      grad = tfe.gradients_function(self.potential)(position)[0]

    if check_numerics:
      return tf.check_numerics(grad, message="gradient of potential")

    return grad


# Examples of unnormalized log density/probabilities
def get_scg_energy_fn():
  """Get energy function for 2d strongly correlated Gaussian."""

  # Avoid recreating tf constants on each invocation of gradients
  mu = tf.constant([0., 0.])
  sigma = tf.constant([[50.05, -49.95], [-49.95, 50.05]])
  sigma_inv = tf.matrix_inverse(sigma)

  def energy(x):
    """Unnormalized log density/energy of 2d strongly correlated Gaussian."""

    xmmu = x - mu
    return .5 * tf.diag_part(
        tf.matmul(tf.matmul(xmmu, sigma_inv), tf.transpose(xmmu)))

  return energy


def get_multivariate_gaussian_energy_fn(x_dim=2):
  """Get energy function for 2d strongly correlated Gaussian."""

  mu = tf.random_normal(shape=[x_dim])
  # Lower triangularize and positive diagonal
  l = tf.sigmoid(
      tf.matrix_band_part(tf.random_normal(shape=[x_dim, x_dim]), -1, 0))
  # Exploit Cholesky decomposition
  sigma = tf.matmul(l, tf.transpose(l))
  sigma *= 100.  # Small covariance causes extreme numerical instability
  sigma_inv = tf.matrix_inverse(sigma)

  def energy(x):
    """Unnormalized log density/energy of 2d strongly correlated Gaussian."""

    xmmu = x - mu
    return .5 * tf.diag_part(
        tf.matmul(tf.matmul(xmmu, sigma_inv), tf.transpose(xmmu)))

  return energy