aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/eager/python/examples/gan/mnist.py
blob: 9a4217929916c258b7e8f2e5b3add2905d20d1da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A deep MNIST classifier using convolutional layers.

Sample usage:
  python mnist.py --help
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
import sys
import time

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

layers = tf.keras.layers
FLAGS = None


class Discriminator(tf.keras.Model):
  """GAN Discriminator.

  A network to differentiate between generated and real handwritten digits.
  """

  def __init__(self, data_format):
    """Creates a model for discriminating between real and generated digits.

    Args:
      data_format: Either 'channels_first' or 'channels_last'.
        'channels_first' is typically faster on GPUs while 'channels_last' is
        typically faster on CPUs. See
        https://www.tensorflow.org/performance/performance_guide#data_formats
    """
    super(Discriminator, self).__init__(name='')
    if data_format == 'channels_first':
      self._input_shape = [-1, 1, 28, 28]
    else:
      assert data_format == 'channels_last'
      self._input_shape = [-1, 28, 28, 1]
    self.conv1 = layers.Conv2D(
        64, 5, padding='SAME', data_format=data_format, activation=tf.tanh)
    self.pool1 = layers.AveragePooling2D(2, 2, data_format=data_format)
    self.conv2 = layers.Conv2D(
        128, 5, data_format=data_format, activation=tf.tanh)
    self.pool2 = layers.AveragePooling2D(2, 2, data_format=data_format)
    self.flatten = layers.Flatten()
    self.fc1 = layers.Dense(1024, activation=tf.tanh)
    self.fc2 = layers.Dense(1, activation=None)

  def call(self, inputs):
    """Return two logits per image estimating input authenticity.

    Users should invoke __call__ to run the network, which delegates to this
    method (and not call this method directly).

    Args:
      inputs: A batch of images as a Tensor with shape [batch_size, 28, 28, 1]
        or [batch_size, 1, 28, 28]

    Returns:
      A Tensor with shape [batch_size] containing logits estimating
      the probability that corresponding digit is real.
    """
    x = tf.reshape(inputs, self._input_shape)
    x = self.conv1(x)
    x = self.pool1(x)
    x = self.conv2(x)
    x = self.pool2(x)
    x = self.flatten(x)
    x = self.fc1(x)
    x = self.fc2(x)
    return x


class Generator(tf.keras.Model):
  """Generator of handwritten digits similar to the ones in the MNIST dataset.
  """

  def __init__(self, data_format):
    """Creates a model for discriminating between real and generated digits.

    Args:
      data_format: Either 'channels_first' or 'channels_last'.
        'channels_first' is typically faster on GPUs while 'channels_last' is
        typically faster on CPUs. See
        https://www.tensorflow.org/performance/performance_guide#data_formats
    """
    super(Generator, self).__init__(name='')
    self.data_format = data_format
    # We are using 128 6x6 channels as input to the first deconvolution layer
    if data_format == 'channels_first':
      self._pre_conv_shape = [-1, 128, 6, 6]
    else:
      assert data_format == 'channels_last'
      self._pre_conv_shape = [-1, 6, 6, 128]
    self.fc1 = layers.Dense(6 * 6 * 128, activation=tf.tanh)

    # In call(), we reshape the output of fc1 to _pre_conv_shape

    # Deconvolution layer. Resulting image shape: (batch, 14, 14, 64)
    self.conv1 = layers.Conv2DTranspose(
        64, 4, strides=2, activation=None, data_format=data_format)

    # Deconvolution layer. Resulting image shape: (batch, 28, 28, 1)
    self.conv2 = layers.Conv2DTranspose(
        1, 2, strides=2, activation=tf.nn.sigmoid, data_format=data_format)

  def call(self, inputs):
    """Return a batch of generated images.

    Users should invoke __call__ to run the network, which delegates to this
    method (and not call this method directly).

    Args:
      inputs: A batch of noise vectors as a Tensor with shape
        [batch_size, length of noise vectors].

    Returns:
      A Tensor containing generated images. If data_format is 'channels_last',
      the shape of returned images is [batch_size, 28, 28, 1], else
      [batch_size, 1, 28, 28]
    """

    x = self.fc1(inputs)
    x = tf.reshape(x, shape=self._pre_conv_shape)
    x = self.conv1(x)
    x = self.conv2(x)
    return x


def discriminator_loss(discriminator_real_outputs, discriminator_gen_outputs):
  """Original discriminator loss for GANs, with label smoothing.

  See `Generative Adversarial Nets` (https://arxiv.org/abs/1406.2661) for more
  details.

  Args:
    discriminator_real_outputs: Discriminator output on real data.
    discriminator_gen_outputs: Discriminator output on generated data. Expected
      to be in the range of (-inf, inf).

  Returns:
    A scalar loss Tensor.
  """

  loss_on_real = tf.losses.sigmoid_cross_entropy(
      tf.ones_like(discriminator_real_outputs),
      discriminator_real_outputs,
      label_smoothing=0.25)
  loss_on_generated = tf.losses.sigmoid_cross_entropy(
      tf.zeros_like(discriminator_gen_outputs), discriminator_gen_outputs)
  loss = loss_on_real + loss_on_generated
  tf.contrib.summary.scalar('discriminator_loss', loss)
  return loss


def generator_loss(discriminator_gen_outputs):
  """Original generator loss for GANs.

  L = -log(sigmoid(D(G(z))))

  See `Generative Adversarial Nets` (https://arxiv.org/abs/1406.2661)
  for more details.

  Args:
    discriminator_gen_outputs: Discriminator output on generated data. Expected
      to be in the range of (-inf, inf).

  Returns:
    A scalar loss Tensor.
  """
  loss = tf.losses.sigmoid_cross_entropy(
      tf.ones_like(discriminator_gen_outputs), discriminator_gen_outputs)
  tf.contrib.summary.scalar('generator_loss', loss)
  return loss


def train_one_epoch(generator, discriminator, generator_optimizer,
                    discriminator_optimizer, dataset, step_counter,
                    log_interval, noise_dim):
  """Trains `generator` and `discriminator` models on `dataset`.

  Args:
    generator: Generator model.
    discriminator: Discriminator model.
    generator_optimizer: Optimizer to use for generator.
    discriminator_optimizer: Optimizer to use for discriminator.
    dataset: Dataset of images to train on.
    step_counter: An integer variable, used to write summaries regularly.
    log_interval: How many steps to wait between logging and collecting
      summaries.
    noise_dim: Dimension of noise vector to use.
  """

  total_generator_loss = 0.0
  total_discriminator_loss = 0.0
  for (batch_index, images) in enumerate(dataset):
    with tf.device('/cpu:0'):
      tf.assign_add(step_counter, 1)

    with tf.contrib.summary.record_summaries_every_n_global_steps(
        log_interval, global_step=step_counter):
      current_batch_size = images.shape[0]
      noise = tf.random_uniform(
          shape=[current_batch_size, noise_dim],
          minval=-1.,
          maxval=1.,
          seed=batch_index)

      # we can use 2 tapes or a single persistent tape.
      # Using two tapes is memory efficient since intermediate tensors can be
      # released between the two .gradient() calls below
      with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
        generated_images = generator(noise)
        tf.contrib.summary.image(
            'generated_images',
            tf.reshape(generated_images, [-1, 28, 28, 1]),
            max_images=10)

        discriminator_gen_outputs = discriminator(generated_images)
        discriminator_real_outputs = discriminator(images)
        discriminator_loss_val = discriminator_loss(discriminator_real_outputs,
                                                    discriminator_gen_outputs)
        total_discriminator_loss += discriminator_loss_val

        generator_loss_val = generator_loss(discriminator_gen_outputs)
        total_generator_loss += generator_loss_val

      generator_grad = gen_tape.gradient(generator_loss_val,
                                         generator.variables)
      discriminator_grad = disc_tape.gradient(discriminator_loss_val,
                                              discriminator.variables)

      generator_optimizer.apply_gradients(
          zip(generator_grad, generator.variables))
      discriminator_optimizer.apply_gradients(
          zip(discriminator_grad, discriminator.variables))

      if log_interval and batch_index > 0 and batch_index % log_interval == 0:
        print('Batch #%d\tAverage Generator Loss: %.6f\t'
              'Average Discriminator Loss: %.6f' %
              (batch_index, total_generator_loss / batch_index,
               total_discriminator_loss / batch_index))


def main(_):
  (device, data_format) = ('/gpu:0', 'channels_first')
  if FLAGS.no_gpu or tf.contrib.eager.num_gpus() <= 0:
    (device, data_format) = ('/cpu:0', 'channels_last')
  print('Using device %s, and data format %s.' % (device, data_format))

  # Load the datasets
  data = input_data.read_data_sets(FLAGS.data_dir)
  dataset = (
      tf.data.Dataset.from_tensor_slices(data.train.images).shuffle(60000)
      .batch(FLAGS.batch_size))

  # Create the models and optimizers.
  model_objects = {
      'generator': Generator(data_format),
      'discriminator': Discriminator(data_format),
      'generator_optimizer': tf.train.AdamOptimizer(FLAGS.lr),
      'discriminator_optimizer': tf.train.AdamOptimizer(FLAGS.lr),
      'step_counter': tf.train.get_or_create_global_step(),
  }

  # Prepare summary writer and checkpoint info
  summary_writer = tf.contrib.summary.create_summary_file_writer(
      FLAGS.output_dir, flush_millis=1000)
  checkpoint_prefix = os.path.join(FLAGS.checkpoint_dir, 'ckpt')
  latest_cpkt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
  if latest_cpkt:
    print('Using latest checkpoint at ' + latest_cpkt)
  checkpoint = tf.train.Checkpoint(**model_objects)
  # Restore variables on creation if a checkpoint exists.
  checkpoint.restore(latest_cpkt)

  with tf.device(device):
    for _ in range(100):
      start = time.time()
      with summary_writer.as_default():
        train_one_epoch(dataset=dataset, log_interval=FLAGS.log_interval,
                        noise_dim=FLAGS.noise, **model_objects)
      end = time.time()
      checkpoint.save(checkpoint_prefix)
      print('\nTrain time for epoch #%d (step %d): %f' %
            (checkpoint.save_counter.numpy(),
             checkpoint.step_counter.numpy(),
             end - start))


if __name__ == '__main__':
  tf.enable_eager_execution()

  parser = argparse.ArgumentParser()
  parser.add_argument(
      '--data-dir',
      type=str,
      default='/tmp/tensorflow/mnist/input_data',
      help=('Directory for storing input data (default '
            '/tmp/tensorflow/mnist/input_data)'))
  parser.add_argument(
      '--batch-size',
      type=int,
      default=128,
      metavar='N',
      help='input batch size for training (default: 128)')
  parser.add_argument(
      '--log-interval',
      type=int,
      default=100,
      metavar='N',
      help=('number of batches between logging and writing summaries '
            '(default: 100)'))
  parser.add_argument(
      '--output_dir',
      type=str,
      default=None,
      metavar='DIR',
      help='Directory to write TensorBoard summaries (defaults to none)')
  parser.add_argument(
      '--checkpoint_dir',
      type=str,
      default='/tmp/tensorflow/mnist/checkpoints/',
      metavar='DIR',
      help=('Directory to save checkpoints in (once per epoch) (default '
            '/tmp/tensorflow/mnist/checkpoints/)'))
  parser.add_argument(
      '--lr',
      type=float,
      default=0.001,
      metavar='LR',
      help='learning rate (default: 0.001)')
  parser.add_argument(
      '--noise',
      type=int,
      default=100,
      metavar='N',
      help='Length of noise vector for generator input (default: 100)')
  parser.add_argument(
      '--no-gpu',
      action='store_true',
      default=False,
      help='disables GPU usage even if a GPU is available')

  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)