aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/distributions/python/ops/vector_exponential_diag.py
blob: e265b5d0f7c10b2782a1a8924babdca9b986f622 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Distribution of a vectorized Exponential, with uncorrelated components."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.contrib.distributions.python.ops import distribution_util
from tensorflow.contrib.distributions.python.ops import vector_exponential_linear_operator as vector_exponential_linop
from tensorflow.python.framework import ops


__all__ = [
    "VectorExponentialDiag",
]


class VectorExponentialDiag(
    vector_exponential_linop.VectorExponentialLinearOperator):
  """The vectorization of the Exponential distribution on `R^k`.

  The vector exponential distribution is defined over a subset of `R^k`, and
  parameterized by a (batch of) length-`k` `loc` vector and a (batch of) `k x k`
  `scale` matrix:  `covariance = scale @ scale.T`, where `@` denotes
  matrix-multiplication.

  #### Mathematical Details

  The probability density function (pdf) is defined over the image of the
  `scale` matrix + `loc`, applied to the positive half-space:
  `Supp = {loc + scale @ x : x in R^k, x_1 > 0, ..., x_k > 0}`.  On this set,

  ```none
  pdf(y; loc, scale) = exp(-||x||_1) / Z,  for y in Supp
  x = inv(scale) @ (y - loc),
  Z = |det(scale)|,
  ```

  where:

  * `loc` is a vector in `R^k`,
  * `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`,
  * `Z` denotes the normalization constant, and,
  * `||x||_1` denotes the `l1` norm of `x`, `sum_i |x_i|`.

  The VectorExponential distribution is a member of the [location-scale
  family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be
  constructed as,

  ```none
  X = (X_1, ..., X_k), each X_i ~ Exponential(rate=1)
  Y = (Y_1, ...,Y_k) = scale @ X + loc
  ```

  #### About `VectorExponential` and `Vector` distributions in TensorFlow.

  The `VectorExponential` is a non-standard distribution that has useful
  properties.

  The marginals `Y_1, ..., Y_k` are *not* Exponential random variables, due to
  the fact that the sum of Exponential random variables is not Exponential.

  Instead, `Y` is a vector whose components are linear combinations of
  Exponential random variables.  Thus, `Y` lives in the vector space generated
  by `vectors` of Exponential distributions.  This allows the user to decide the
  mean and covariance (by setting `loc` and `scale`), while preserving some
  properties of the Exponential distribution.  In particular, the tails of `Y_i`
  will be (up to polynomial factors) exponentially decaying.

  To see this last statement, note that the pdf of `Y_i` is the convolution of
  the pdf of `k` independent Exponential random variables.  One can then show by
  induction that distributions with exponential (up to polynomial factors) tails
  are closed under convolution.


  #### Examples

  ```python
  tfd = tf.contrib.distributions

  # Initialize a single 2-variate VectorExponential, supported on
  # {(x, y) in R^2 : x > 0, y > 0}.

  # The first component has pdf exp{-x}, the second 0.5 exp{-x / 2}
  vex = tfd.VectorExponentialDiag(scale_diag=[1., 2.])

  # Compute the pdf of an`R^2` observation; return a scalar.
  vex.prob([3., 4.]).eval()  # shape: []

  # Initialize a 2-batch of 3-variate Vector Exponential's.
  loc = [[1., 2, 3],
         [1., 0, 0]]              # shape: [2, 3]
  scale_diag = [[1., 2, 3],
                [0.5, 1, 1.5]]     # shape: [2, 3]

  vex = tfd.VectorExponentialDiag(loc, scale_diag)

  # Compute the pdf of two `R^3` observations; return a length-2 vector.
  x = [[1.9, 2.2, 3.1],
       [10., 1.0, 9.0]]     # shape: [2, 3]
  vex.prob(x).eval()    # shape: [2]
  ```

  """

  def __init__(self,
               loc=None,
               scale_diag=None,
               scale_identity_multiplier=None,
               validate_args=False,
               allow_nan_stats=True,
               name="VectorExponentialDiag"):
    """Construct Vector Exponential distribution supported on a subset of `R^k`.

    The `batch_shape` is the broadcast shape between `loc` and `scale`
    arguments.

    The `event_shape` is given by last dimension of the matrix implied by
    `scale`. The last dimension of `loc` (if provided) must broadcast with this.

    Recall that `covariance = scale @ scale.T`.

    ```none
    scale = diag(scale_diag + scale_identity_multiplier * ones(k))
    ```

    where:

    * `scale_diag.shape = [k]`, and,
    * `scale_identity_multiplier.shape = []`.

    Additional leading dimensions (if any) will index batches.

    If both `scale_diag` and `scale_identity_multiplier` are `None`, then
    `scale` is the Identity matrix.

    Args:
      loc: Floating-point `Tensor`. If this is set to `None`, `loc` is
        implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where
        `b >= 0` and `k` is the event size.
      scale_diag: Non-zero, floating-point `Tensor` representing a diagonal
        matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`,
        and characterizes `b`-batches of `k x k` diagonal matrices added to
        `scale`. When both `scale_identity_multiplier` and `scale_diag` are
        `None` then `scale` is the `Identity`.
      scale_identity_multiplier: Non-zero, floating-point `Tensor` representing
        a scaled-identity-matrix added to `scale`. May have shape
        `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scaled
        `k x k` identity matrices added to `scale`. When both
        `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is
        the `Identity`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      ValueError: if at most `scale_identity_multiplier` is specified.
    """
    parameters = locals()
    with ops.name_scope(name) as name:
      with ops.name_scope("init", values=[
          loc, scale_diag, scale_identity_multiplier]):
        # No need to validate_args while making diag_scale.  The returned
        # LinearOperatorDiag has an assert_non_singular method that is called by
        # the Bijector.
        scale = distribution_util.make_diag_scale(
            loc=loc,
            scale_diag=scale_diag,
            scale_identity_multiplier=scale_identity_multiplier,
            validate_args=False,
            assert_positive=False)
    super(VectorExponentialDiag, self).__init__(
        loc=loc,
        scale=scale,
        validate_args=validate_args,
        allow_nan_stats=allow_nan_stats,
        name=name)
    self._parameters = parameters