aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/distributions/python/ops/sinh_arcsinh.py
blob: 03828fa61277eeaf7ce90de8023b4ed91f6cc4dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""SinhArcsinh transformation of a distribution."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.contrib.distributions.python.ops import bijectors
from tensorflow.contrib.distributions.python.ops import distribution_util
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops.distributions import normal
from tensorflow.python.ops.distributions import transformed_distribution

__all__ = [
    "SinhArcsinh",
]


class SinhArcsinh(transformed_distribution.TransformedDistribution):
  """The SinhArcsinh transformation of a distribution on `(-inf, inf)`.

  This distribution models a random variable, making use of
  a `SinhArcsinh` transformation (which has adjustable tailweight and skew),
  a rescaling, and a shift.

  The `SinhArcsinh` transformation of the Normal is described in great depth in
  [Sinh-arcsinh distributions](https://www.jstor.org/stable/27798865).
  Here we use a slightly different parameterization, in terms of `tailweight`
  and `skewness`.  Additionally we allow for distributions other than Normal,
  and control over `scale` as well as a "shift" parameter `loc`.

  #### Mathematical Details

  Given random variable `Z`, we define the SinhArcsinh
  transformation of `Z`, `Y`, parameterized by
  `(loc, scale, skewness, tailweight)`, via the relation:

  ```
  Y := loc + scale * F(Z) * (2 / F_0(2))
  F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight )
  F_0(Z) := Sinh( Arcsinh(Z) * tailweight )
  ```

  This distribution is similar to the location-scale transformation
  `L(Z) := loc + scale * Z` in the following ways:

  * If `skewness = 0` and `tailweight = 1` (the defaults), `F(Z) = Z`, and then
    `Y = L(Z)` exactly.
  * `loc` is used in both to shift the result by a constant factor.
  * The multiplication of `scale` by `2 / F_0(2)` ensures that if `skewness = 0`
    `P[Y - loc <= 2 * scale] = P[L(Z) - loc <= 2 * scale]`.
    Thus it can be said that the weights in the tails of `Y` and `L(Z)` beyond
    `loc + 2 * scale` are the same.

  This distribution is different than `loc + scale * Z` due to the
  reshaping done by `F`:

  * Positive (negative) `skewness` leads to positive (negative) skew.
    * positive skew means, the mode of `F(Z)` is "tilted" to the right.
    * positive skew means positive values of `F(Z)` become more likely, and
      negative values become less likely.
  * Larger (smaller) `tailweight` leads to fatter (thinner) tails.
    * Fatter tails mean larger values of `|F(Z)|` become more likely.
    * `tailweight < 1` leads to a distribution that is "flat" around `Y = loc`,
      and a very steep drop-off in the tails.
    * `tailweight > 1` leads to a distribution more peaked at the mode with
      heavier tails.

  To see the argument about the tails, note that for `|Z| >> 1` and
  `|Z| >> (|skewness| * tailweight)**tailweight`, we have
  `Y approx 0.5 Z**tailweight e**(sign(Z) skewness * tailweight)`.

  To see the argument regarding multiplying `scale` by `2 / F_0(2)`,

  ```
  P[(Y - loc) / scale <= 2] = P[F(Z) * (2 / F_0(2)) <= 2]
                            = P[F(Z) <= F_0(2)]
                            = P[Z <= 2]  (if F = F_0).
  ```
  """

  def __init__(self,
               loc,
               scale,
               skewness=None,
               tailweight=None,
               distribution=None,
               validate_args=False,
               allow_nan_stats=True,
               name="SinhArcsinh"):
    """Construct SinhArcsinh distribution on `(-inf, inf)`.

    Arguments `(loc, scale, skewness, tailweight)` must have broadcastable shape
    (indexing batch dimensions).  They must all have the same `dtype`.

    Args:
      loc: Floating-point `Tensor`.
      scale:  `Tensor` of same `dtype` as `loc`.
      skewness:  Skewness parameter.  Default is `0.0` (no skew).
      tailweight:  Tailweight parameter. Default is `1.0` (unchanged tailweight)
      distribution: `tf.Distribution`-like instance. Distribution that is
        transformed to produce this distribution.
        Default is `tf.distributions.Normal(0., 1.)`.
        Must be a scalar-batch, scalar-event distribution.  Typically
        `distribution.reparameterization_type = FULLY_REPARAMETERIZED` or it is
        a function of non-trainable parameters. WARNING: If you backprop through
        a `SinhArcsinh` sample and `distribution` is not
        `FULLY_REPARAMETERIZED` yet is a function of trainable variables, then
        the gradient will be incorrect!
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
    parameters = locals()

    with ops.name_scope(name,
                        values=[loc, scale, skewness, tailweight]) as name:
      loc = ops.convert_to_tensor(loc, name="loc")
      dtype = loc.dtype
      scale = ops.convert_to_tensor(scale, name="scale", dtype=dtype)
      tailweight = 1. if tailweight is None else tailweight
      has_default_skewness = skewness is None
      skewness = 0. if skewness is None else skewness
      tailweight = ops.convert_to_tensor(
          tailweight, name="tailweight", dtype=dtype)
      skewness = ops.convert_to_tensor(skewness, name="skewness", dtype=dtype)

      batch_shape = distribution_util.get_broadcast_shape(
          loc, scale, tailweight, skewness)

      # Recall, with Z a random variable,
      #   Y := loc + C * F(Z),
      #   F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight )
      #   F_0(Z) := Sinh( Arcsinh(Z) * tailweight )
      #   C := 2 * scale / F_0(2)
      if distribution is None:
        distribution = normal.Normal(
            loc=array_ops.zeros([], dtype=dtype),
            scale=array_ops.ones([], dtype=dtype),
            allow_nan_stats=allow_nan_stats)
      else:
        asserts = distribution_util.maybe_check_scalar_distribution(
            distribution, dtype, validate_args)
        if asserts:
          loc = control_flow_ops.with_dependencies(asserts, loc)

      # Make the SAS bijector, 'F'.
      f = bijectors.SinhArcsinh(
          skewness=skewness, tailweight=tailweight)
      if has_default_skewness:
        f_noskew = f
      else:
        f_noskew = bijectors.SinhArcsinh(
            skewness=skewness.dtype.as_numpy_dtype(0.),
            tailweight=tailweight)

      # Make the AffineScalar bijector, Z --> loc + scale * Z (2 / F_0(2))
      c = 2 * scale / f_noskew.forward(ops.convert_to_tensor(2, dtype=dtype))
      affine = bijectors.AffineScalar(
          shift=loc,
          scale=c,
          validate_args=validate_args)

      bijector = bijectors.Chain([affine, f])

      super(SinhArcsinh, self).__init__(
          distribution=distribution,
          bijector=bijector,
          batch_shape=batch_shape,
          validate_args=validate_args,
          name=name)
    self._parameters = parameters
    self._loc = loc
    self._scale = scale
    self._tailweight = tailweight
    self._skewness = skewness

  @property
  def loc(self):
    """The `loc` in `Y := loc + scale @ F(Z) * (2 / F(2))."""
    return self._loc

  @property
  def scale(self):
    """The `LinearOperator` `scale` in `Y := loc + scale @ F(Z) * (2 / F(2))."""
    return self._scale

  @property
  def tailweight(self):
    """Controls the tail decay.  `tailweight > 1` means faster than Normal."""
    return self._tailweight

  @property
  def skewness(self):
    """Controls the skewness.  `Skewness > 0` means right skew."""
    return self._skewness