aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/distributions/python/ops/relaxed_onehot_categorical.py
blob: f56ba0781604cb5a4fb3070b79aa86e09ceb6766 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Relaxed OneHotCategorical distribution classes."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from tensorflow.contrib.distributions.python.ops import bijectors
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops.distributions import distribution
from tensorflow.python.ops.distributions import transformed_distribution
from tensorflow.python.ops.distributions import util as distribution_util


class ExpRelaxedOneHotCategorical(distribution.Distribution):
  """ExpRelaxedOneHotCategorical distribution with temperature and logits.

  An ExpRelaxedOneHotCategorical distribution is a log-transformed
  RelaxedOneHotCategorical distribution. The RelaxedOneHotCategorical is a
  distribution over random probability vectors, vectors of positive real
  values that sum to one, which continuously approximates a OneHotCategorical.
  The degree of approximation is controlled by a temperature: as the temperature
  goes to 0 the RelaxedOneHotCategorical becomes discrete with a distribution
  described by the logits, as the temperature goes to infinity the
  RelaxedOneHotCategorical becomes the constant distribution that is identically
  the constant vector of (1/event_size, ..., 1/event_size).

  Because computing log-probabilities of the RelaxedOneHotCategorical can
  suffer from underflow issues, this class is one solution for loss
  functions that depend on log-probabilities, such as the KL Divergence found
  in the variational autoencoder loss. The KL divergence between two
  distributions is invariant under invertible transformations, so evaluating
  KL divergences of ExpRelaxedOneHotCategorical samples, which are always
  followed by a `tf.exp` op, is equivalent to evaluating KL divergences of
  RelaxedOneHotCategorical samples. See the appendix of Maddison et al., 2016
  for more mathematical details, where this distribution is called the
  ExpConcrete.

  #### Examples

  Creates a continuous distribution, whose exp approximates a 3-class one-hot
  categorical distribution. The 2nd class is the most likely to be the
  largest component in samples drawn from this distribution. If those samples
  are followed by a `tf.exp` op, then they are distributed as a relaxed onehot
  categorical.

  ```python
  temperature = 0.5
  p = [0.1, 0.5, 0.4]
  dist = ExpRelaxedOneHotCategorical(temperature, probs=p)
  samples = dist.sample()
  exp_samples = tf.exp(samples)
  # exp_samples has the same distribution as samples from
  # RelaxedOneHotCategorical(temperature, probs=p)
  ```

  Creates a continuous distribution, whose exp approximates a 3-class one-hot
  categorical distribution. The 2nd class is the most likely to be the
  largest component in samples drawn from this distribution.

  ```python
  temperature = 0.5
  logits = [-2, 2, 0]
  dist = ExpRelaxedOneHotCategorical(temperature, logits=logits)
  samples = dist.sample()
  exp_samples = tf.exp(samples)
  # exp_samples has the same distribution as samples from
  # RelaxedOneHotCategorical(temperature, probs=p)
  ```

  Creates a continuous distribution, whose exp approximates a 3-class one-hot
  categorical distribution. Because the temperature is very low, samples from
  this distribution are almost discrete, with one component almost 0 and the
  others very negative. The 2nd class is the most likely to be the largest
  component in samples drawn from this distribution.

  ```python
  temperature = 1e-5
  logits = [-2, 2, 0]
  dist = ExpRelaxedOneHotCategorical(temperature, logits=logits)
  samples = dist.sample()
  exp_samples = tf.exp(samples)
  # exp_samples has the same distribution as samples from
  # RelaxedOneHotCategorical(temperature, probs=p)
  ```

  Creates a continuous distribution, whose exp approximates a 3-class one-hot
  categorical distribution. Because the temperature is very high, samples from
  this distribution are usually close to the (-log(3), -log(3), -log(3)) vector.
  The 2nd class is still the most likely to be the largest component
  in samples drawn from this distribution.

  ```python
  temperature = 10
  logits = [-2, 2, 0]
  dist = ExpRelaxedOneHotCategorical(temperature, logits=logits)
  samples = dist.sample()
  exp_samples = tf.exp(samples)
  # exp_samples has the same distribution as samples from
  # RelaxedOneHotCategorical(temperature, probs=p)
  ```

  Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution:
  A Continuous Relaxation of Discrete Random Variables. 2016.
  """

  def __init__(
      self,
      temperature,
      logits=None,
      probs=None,
      dtype=None,
      validate_args=False,
      allow_nan_stats=True,
      name="ExpRelaxedOneHotCategorical"):
    """Initialize ExpRelaxedOneHotCategorical using class log-probabilities.

    Args:
      temperature: An 0-D `Tensor`, representing the temperature
        of a set of ExpRelaxedCategorical distributions. The temperature should
        be positive.
      logits: An N-D `Tensor`, `N >= 1`, representing the log probabilities
        of a set of ExpRelaxedCategorical distributions. The first
        `N - 1` dimensions index into a batch of independent distributions and
        the last dimension represents a vector of logits for each class. Only
        one of `logits` or `probs` should be passed in.
      probs: An N-D `Tensor`, `N >= 1`, representing the probabilities
        of a set of ExpRelaxedCategorical distributions. The first
        `N - 1` dimensions index into a batch of independent distributions and
        the last dimension represents a vector of probabilities for each
        class. Only one of `logits` or `probs` should be passed in.
      dtype: The type of the event samples (default: inferred from
        logits/probs).
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
    parameters = locals()
    with ops.name_scope(name, values=[logits, probs, temperature]):

      self._logits, self._probs = distribution_util.get_logits_and_probs(
          name=name, logits=logits, probs=probs, validate_args=validate_args,
          multidimensional=True)

      if dtype is None:
        dtype = self._logits.dtype
        if not validate_args:
          temperature = math_ops.cast(temperature, dtype)

      with ops.control_dependencies([check_ops.assert_positive(temperature)]
                                    if validate_args else []):
        self._temperature = array_ops.identity(temperature, name="temperature")
        self._temperature_2d = array_ops.reshape(temperature, [-1, 1],
                                                 name="temperature_2d")

      logits_shape_static = self._logits.get_shape().with_rank_at_least(1)
      if logits_shape_static.ndims is not None:
        self._batch_rank = ops.convert_to_tensor(
            logits_shape_static.ndims - 1,
            dtype=dtypes.int32,
            name="batch_rank")
      else:
        with ops.name_scope(name="batch_rank"):
          self._batch_rank = array_ops.rank(self._logits) - 1

      with ops.name_scope(name="event_size"):
        self._event_size = array_ops.shape(self._logits)[-1]

    super(ExpRelaxedOneHotCategorical, self).__init__(
        dtype=dtype,
        reparameterization_type=distribution.FULLY_REPARAMETERIZED,
        validate_args=validate_args,
        allow_nan_stats=allow_nan_stats,
        parameters=parameters,
        graph_parents=[self._logits,
                       self._probs,
                       self._temperature],
        name=name)

  @property
  def event_size(self):
    """Scalar `int32` tensor: the number of classes."""
    return self._event_size

  @property
  def temperature(self):
    """Batchwise temperature tensor of a RelaxedCategorical."""
    return self._temperature

  @property
  def logits(self):
    """Vector of coordinatewise logits."""
    return self._logits

  @property
  def probs(self):
    """Vector of probabilities summing to one."""
    return self._probs

  def _batch_shape_tensor(self):
    return array_ops.shape(self._logits)[:-1]

  def _batch_shape(self):
    return self.logits.get_shape()[:-1]

  def _event_shape_tensor(self):
    return array_ops.shape(self.logits)[-1:]

  def _event_shape(self):
    return self.logits.get_shape().with_rank_at_least(1)[-1:]

  def _sample_n(self, n, seed=None):
    sample_shape = array_ops.concat([[n], array_ops.shape(self.logits)], 0)
    logits = self.logits * array_ops.ones(sample_shape, dtype=self.dtype)
    logits_2d = array_ops.reshape(logits, [-1, self.event_size])
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    uniform = random_ops.random_uniform(
        shape=array_ops.shape(logits_2d),
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    gumbel = -math_ops.log(-math_ops.log(uniform))
    noisy_logits = math_ops.div(gumbel + logits_2d, self._temperature_2d)
    samples = nn_ops.log_softmax(noisy_logits)
    ret = array_ops.reshape(samples, sample_shape)
    return ret

  def _log_prob(self, x):
    x = self._assert_valid_sample(x)
    # broadcast logits or x if need be.
    logits = self.logits
    if (not x.get_shape().is_fully_defined() or
        not logits.get_shape().is_fully_defined() or
        x.get_shape() != logits.get_shape()):
      logits = array_ops.ones_like(x, dtype=logits.dtype) * logits
      x = array_ops.ones_like(logits, dtype=x.dtype) * x
    logits_shape = array_ops.shape(math_ops.reduce_sum(logits, axis=[-1]))
    logits_2d = array_ops.reshape(logits, [-1, self.event_size])
    x_2d = array_ops.reshape(x, [-1, self.event_size])
    # compute the normalization constant
    k = math_ops.cast(self.event_size, x.dtype)
    log_norm_const = (math_ops.lgamma(k)
                      + (k - 1.)
                      * math_ops.log(self.temperature))
    # compute the unnormalized density
    log_softmax = nn_ops.log_softmax(logits_2d - x_2d * self._temperature_2d)
    log_unnorm_prob = math_ops.reduce_sum(log_softmax, [-1], keepdims=False)
    # combine unnormalized density with normalization constant
    log_prob = log_norm_const + log_unnorm_prob
    # Reshapes log_prob to be consistent with shape of user-supplied logits
    ret = array_ops.reshape(log_prob, logits_shape)
    return ret

  def _assert_valid_sample(self, x):
    if not self.validate_args:
      return x
    return control_flow_ops.with_dependencies([
        check_ops.assert_non_positive(x),
        distribution_util.assert_close(
            array_ops.zeros([], dtype=self.dtype),
            math_ops.reduce_logsumexp(x, axis=[-1])),
    ], x)


class RelaxedOneHotCategorical(
    transformed_distribution.TransformedDistribution):
  """RelaxedOneHotCategorical distribution with temperature and logits.

  The RelaxedOneHotCategorical is a distribution over random probability
  vectors, vectors of positive real values that sum to one, which continuously
  approximates a OneHotCategorical. The degree of approximation is controlled by
  a temperature: as the temperature goes to 0 the RelaxedOneHotCategorical
  becomes discrete with a distribution described by the `logits` or `probs`
  parameters, as the temperature goes to infinity the RelaxedOneHotCategorical
  becomes the constant distribution that is identically the constant vector of
  (1/event_size, ..., 1/event_size).

  The RelaxedOneHotCategorical distribution was concurrently introduced as the
  Gumbel-Softmax (Jang et al., 2016) and Concrete (Maddison et al., 2016)
  distributions for use as a reparameterized continuous approximation to the
  `Categorical` one-hot distribution. If you use this distribution, please cite
  both papers.

  #### Examples

  Creates a continuous distribution, which approximates a 3-class one-hot
  categorical distribution. The 2nd class is the most likely to be the
  largest component in samples drawn from this distribution.

  ```python
  temperature = 0.5
  p = [0.1, 0.5, 0.4]
  dist = RelaxedOneHotCategorical(temperature, probs=p)
  ```

  Creates a continuous distribution, which approximates a 3-class one-hot
  categorical distribution. The 2nd class is the most likely to be the
  largest component in samples drawn from this distribution.

  ```python
  temperature = 0.5
  logits = [-2, 2, 0]
  dist = RelaxedOneHotCategorical(temperature, logits=logits)
  ```

  Creates a continuous distribution, which approximates a 3-class one-hot
  categorical distribution. Because the temperature is very low, samples from
  this distribution are almost discrete, with one component almost 1 and the
  others nearly 0. The 2nd class is the most likely to be the largest component
  in samples drawn from this distribution.

  ```python
  temperature = 1e-5
  logits = [-2, 2, 0]
  dist = RelaxedOneHotCategorical(temperature, logits=logits)
  ```

  Creates a continuous distribution, which approximates a 3-class one-hot
  categorical distribution. Because the temperature is very high, samples from
  this distribution are usually close to the (1/3, 1/3, 1/3) vector. The 2nd
  class is still the most likely to be the largest component
  in samples drawn from this distribution.

  ```python
  temperature = 10
  logits = [-2, 2, 0]
  dist = RelaxedOneHotCategorical(temperature, logits=logits)
  ```

  Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with
  Gumbel-Softmax. 2016.

  Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution:
  A Continuous Relaxation of Discrete Random Variables. 2016.
  """

  def __init__(
      self,
      temperature,
      logits=None,
      probs=None,
      dtype=None,
      validate_args=False,
      allow_nan_stats=True,
      name="RelaxedOneHotCategorical"):
    """Initialize RelaxedOneHotCategorical using class log-probabilities.

    Args:
      temperature: An 0-D `Tensor`, representing the temperature
        of a set of RelaxedOneHotCategorical distributions. The temperature
        should be positive.
      logits: An N-D `Tensor`, `N >= 1`, representing the log probabilities
        of a set of RelaxedOneHotCategorical distributions. The first
        `N - 1` dimensions index into a batch of independent distributions and
        the last dimension represents a vector of logits for each class. Only
        one of `logits` or `probs` should be passed in.
      probs: An N-D `Tensor`, `N >= 1`, representing the probabilities
        of a set of RelaxedOneHotCategorical distributions. The first `N - 1`
        dimensions index into a batch of independent distributions and the last
        dimension represents a vector of probabilities for each class. Only one
        of `logits` or `probs` should be passed in.
      dtype: The type of the event samples (default: inferred from
        logits/probs).
      validate_args: Unused in this distribution.
      allow_nan_stats: Python `bool`, default `True`. If `False`, raise an
        exception if a statistic (e.g. mean/mode/etc...) is undefined for any
        batch member. If `True`, batch members with valid parameters leading to
        undefined statistics will return NaN for this statistic.
      name: A name for this distribution (optional).
    """
    dist = ExpRelaxedOneHotCategorical(temperature,
                                       logits=logits,
                                       probs=probs,
                                       dtype=dtype,
                                       validate_args=validate_args,
                                       allow_nan_stats=allow_nan_stats)
    super(RelaxedOneHotCategorical, self).__init__(dist,
                                                   bijectors.Exp(event_ndims=1),
                                                   name=name)