aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/distributions/python/ops/quantized_distribution.py
blob: ac027f0f43e061681da8469ce7e4ab40324e4364 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Quantized distribution."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.distributions import distribution as distributions
from tensorflow.python.ops.distributions import util as distribution_util

__all__ = ["QuantizedDistribution"]


def _logsum_expbig_minus_expsmall(big, small):
  """Stable evaluation of `Log[exp{big} - exp{small}]`.

  To work correctly, we should have the pointwise relation:  `small <= big`.

  Args:
    big: Floating-point `Tensor`
    small: Floating-point `Tensor` with same `dtype` as `big` and broadcastable
      shape.

  Returns:
    `Tensor` of same `dtype` of `big` and broadcast shape.
  """
  with ops.name_scope("logsum_expbig_minus_expsmall", values=[small, big]):
    return math_ops.log(1. - math_ops.exp(small - big)) + big


_prob_base_note = """
For whole numbers `y`,

```
P[Y = y] := P[X <= low],  if y == low,
         := P[X > high - 1],  y == high,
         := 0, if j < low or y > high,
         := P[y - 1 < X <= y],  all other y.
```

"""

_prob_note = _prob_base_note + """
The base distribution's `cdf` method must be defined on `y - 1`. If the
base distribution has a `survival_function` method, results will be more
accurate for large values of `y`, and in this case the `survival_function` must
also be defined on `y - 1`.
"""

_log_prob_note = _prob_base_note + """
The base distribution's `log_cdf` method must be defined on `y - 1`. If the
base distribution has a `log_survival_function` method results will be more
accurate for large values of `y`, and in this case the `log_survival_function`
must also be defined on `y - 1`.
"""


_cdf_base_note = """

For whole numbers `y`,

```
cdf(y) := P[Y <= y]
        = 1, if y >= high,
        = 0, if y < low,
        = P[X <= y], otherwise.
```

Since `Y` only has mass at whole numbers, `P[Y <= y] = P[Y <= floor(y)]`.
This dictates that fractional `y` are first floored to a whole number, and
then above definition applies.
"""

_cdf_note = _cdf_base_note + """
The base distribution's `cdf` method must be defined on `y - 1`.
"""

_log_cdf_note = _cdf_base_note + """
The base distribution's `log_cdf` method must be defined on `y - 1`.
"""


_sf_base_note = """

For whole numbers `y`,

```
survival_function(y) := P[Y > y]
                      = 0, if y >= high,
                      = 1, if y < low,
                      = P[X <= y], otherwise.
```

Since `Y` only has mass at whole numbers, `P[Y <= y] = P[Y <= floor(y)]`.
This dictates that fractional `y` are first floored to a whole number, and
then above definition applies.
"""

_sf_note = _sf_base_note + """
The base distribution's `cdf` method must be defined on `y - 1`.
"""

_log_sf_note = _sf_base_note + """
The base distribution's `log_cdf` method must be defined on `y - 1`.
"""


class QuantizedDistribution(distributions.Distribution):
  """Distribution representing the quantization `Y = ceiling(X)`.

  #### Definition in terms of sampling.

  ```
  1. Draw X
  2. Set Y <-- ceiling(X)
  3. If Y < low, reset Y <-- low
  4. If Y > high, reset Y <-- high
  5. Return Y
  ```

  #### Definition in terms of the probability mass function.

  Given scalar random variable `X`, we define a discrete random variable `Y`
  supported on the integers as follows:

  ```
  P[Y = j] := P[X <= low],  if j == low,
           := P[X > high - 1],  j == high,
           := 0, if j < low or j > high,
           := P[j - 1 < X <= j],  all other j.
  ```

  Conceptually, without cutoffs, the quantization process partitions the real
  line `R` into half open intervals, and identifies an integer `j` with the
  right endpoints:

  ```
  R = ... (-2, -1](-1, 0](0, 1](1, 2](2, 3](3, 4] ...
  j = ...      -1      0     1     2     3     4  ...
  ```

  `P[Y = j]` is the mass of `X` within the `jth` interval.
  If `low = 0`, and `high = 2`, then the intervals are redrawn
  and `j` is re-assigned:

  ```
  R = (-infty, 0](0, 1](1, infty)
  j =          0     1     2
  ```

  `P[Y = j]` is still the mass of `X` within the `jth` interval.

  #### Caveats

  Since evaluation of each `P[Y = j]` involves a cdf evaluation (rather than
  a closed form function such as for a Poisson), computations such as mean and
  entropy are better done with samples or approximations, and are not
  implemented by this class.
  """

  def __init__(self,
               distribution,
               low=None,
               high=None,
               validate_args=False,
               name="QuantizedDistribution"):
    """Construct a Quantized Distribution representing `Y = ceiling(X)`.

    Some properties are inherited from the distribution defining `X`. Example:
    `allow_nan_stats` is determined for this `QuantizedDistribution` by reading
    the `distribution`.

    Args:
      distribution:  The base distribution class to transform. Typically an
        instance of `Distribution`.
      low: `Tensor` with same `dtype` as this distribution and shape
        able to be added to samples. Should be a whole number. Default `None`.
        If provided, base distribution's `prob` should be defined at
        `low`.
      high: `Tensor` with same `dtype` as this distribution and shape
        able to be added to samples. Should be a whole number. Default `None`.
        If provided, base distribution's `prob` should be defined at
        `high - 1`.
        `high` must be strictly greater than `low`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      TypeError: If `dist_cls` is not a subclass of
          `Distribution` or continuous.
      NotImplementedError:  If the base distribution does not implement `cdf`.
    """
    parameters = locals()
    values = (
        list(distribution.parameters.values()) +
        [low, high])
    with ops.name_scope(name, values=values):
      self._dist = distribution

      if low is not None:
        low = ops.convert_to_tensor(low, name="low")
      if high is not None:
        high = ops.convert_to_tensor(high, name="high")
      check_ops.assert_same_float_dtype(
          tensors=[self.distribution, low, high])

      # We let QuantizedDistribution access _graph_parents since this class is
      # more like a baseclass.
      graph_parents = self._dist._graph_parents  # pylint: disable=protected-access

      checks = []
      if low is not None and high is not None:
        message = "low must be strictly less than high."
        checks.append(
            check_ops.assert_less(
                low, high, message=message))
      self._validate_args = validate_args  # self._check_integer uses this.
      with ops.control_dependencies(checks if validate_args else []):
        if low is not None:
          self._low = self._check_integer(low)
          graph_parents += [self._low]
        else:
          self._low = None
        if high is not None:
          self._high = self._check_integer(high)
          graph_parents += [self._high]
        else:
          self._high = None

    super(QuantizedDistribution, self).__init__(
        dtype=self._dist.dtype,
        reparameterization_type=distributions.NOT_REPARAMETERIZED,
        validate_args=validate_args,
        allow_nan_stats=self._dist.allow_nan_stats,
        parameters=parameters,
        graph_parents=graph_parents,
        name=name)

  def _batch_shape_tensor(self):
    return self.distribution.batch_shape_tensor()

  def _batch_shape(self):
    return self.distribution.batch_shape

  def _event_shape_tensor(self):
    return self.distribution.event_shape_tensor()

  def _event_shape(self):
    return self.distribution.event_shape

  def _sample_n(self, n, seed=None):
    low = self._low
    high = self._high
    with ops.name_scope("transform"):
      n = ops.convert_to_tensor(n, name="n")
      x_samps = self.distribution.sample(n, seed=seed)
      ones = array_ops.ones_like(x_samps)

      # Snap values to the intervals (j - 1, j].
      result_so_far = math_ops.ceil(x_samps)

      if low is not None:
        result_so_far = array_ops.where(result_so_far < low,
                                        low * ones, result_so_far)

      if high is not None:
        result_so_far = array_ops.where(result_so_far > high,
                                        high * ones, result_so_far)

      return result_so_far

  @distribution_util.AppendDocstring(_log_prob_note)
  def _log_prob(self, y):
    if not hasattr(self.distribution, "_log_cdf"):
      raise NotImplementedError(
          "'log_prob' not implemented unless the base distribution implements "
          "'log_cdf'")
    y = self._check_integer(y)
    try:
      return self._log_prob_with_logsf_and_logcdf(y)
    except NotImplementedError:
      return self._log_prob_with_logcdf(y)

  def _log_prob_with_logcdf(self, y):
    return _logsum_expbig_minus_expsmall(self.log_cdf(y), self.log_cdf(y - 1))

  def _log_prob_with_logsf_and_logcdf(self, y):
    """Compute log_prob(y) using log survival_function and cdf together."""
    # There are two options that would be equal if we had infinite precision:
    # Log[ sf(y - 1) - sf(y) ]
    #   = Log[ exp{logsf(y - 1)} - exp{logsf(y)} ]
    # Log[ cdf(y) - cdf(y - 1) ]
    #   = Log[ exp{logcdf(y)} - exp{logcdf(y - 1)} ]
    logsf_y = self.log_survival_function(y)
    logsf_y_minus_1 = self.log_survival_function(y - 1)
    logcdf_y = self.log_cdf(y)
    logcdf_y_minus_1 = self.log_cdf(y - 1)

    # Important:  Here we use select in a way such that no input is inf, this
    # prevents the troublesome case where the output of select can be finite,
    # but the output of grad(select) will be NaN.

    # In either case, we are doing Log[ exp{big} - exp{small} ]
    # We want to use the sf items precisely when we are on the right side of the
    # median, which occurs when logsf_y < logcdf_y.
    big = array_ops.where(logsf_y < logcdf_y, logsf_y_minus_1, logcdf_y)
    small = array_ops.where(logsf_y < logcdf_y, logsf_y, logcdf_y_minus_1)

    return _logsum_expbig_minus_expsmall(big, small)

  @distribution_util.AppendDocstring(_prob_note)
  def _prob(self, y):
    if not hasattr(self.distribution, "_cdf"):
      raise NotImplementedError(
          "'prob' not implemented unless the base distribution implements "
          "'cdf'")
    y = self._check_integer(y)
    try:
      return self._prob_with_sf_and_cdf(y)
    except NotImplementedError:
      return self._prob_with_cdf(y)

  def _prob_with_cdf(self, y):
    return self.cdf(y) - self.cdf(y - 1)

  def _prob_with_sf_and_cdf(self, y):
    # There are two options that would be equal if we had infinite precision:
    # sf(y - 1) - sf(y)
    # cdf(y) - cdf(y - 1)
    sf_y = self.survival_function(y)
    sf_y_minus_1 = self.survival_function(y - 1)
    cdf_y = self.cdf(y)
    cdf_y_minus_1 = self.cdf(y - 1)

    # sf_prob has greater precision iff we're on the right side of the median.
    return array_ops.where(
        sf_y < cdf_y,  # True iff we're on the right side of the median.
        sf_y_minus_1 - sf_y,
        cdf_y - cdf_y_minus_1)

  @distribution_util.AppendDocstring(_log_cdf_note)
  def _log_cdf(self, y):
    low = self._low
    high = self._high

    # Recall the promise:
    # cdf(y) := P[Y <= y]
    #         = 1, if y >= high,
    #         = 0, if y < low,
    #         = P[X <= y], otherwise.

    # P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in
    # between.
    j = math_ops.floor(y)

    result_so_far = self.distribution.log_cdf(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if low is not None:
      neg_inf = -np.inf * array_ops.ones_like(result_so_far)
      result_so_far = array_ops.where(j < low, neg_inf, result_so_far)
    if high is not None:
      result_so_far = array_ops.where(j >= high,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)

    return result_so_far

  @distribution_util.AppendDocstring(_cdf_note)
  def _cdf(self, y):
    low = self._low
    high = self._high

    # Recall the promise:
    # cdf(y) := P[Y <= y]
    #         = 1, if y >= high,
    #         = 0, if y < low,
    #         = P[X <= y], otherwise.

    # P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in
    # between.
    j = math_ops.floor(y)

    # P[X <= j], used when low < X < high.
    result_so_far = self.distribution.cdf(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if low is not None:
      result_so_far = array_ops.where(j < low,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)
    if high is not None:
      result_so_far = array_ops.where(j >= high,
                                      array_ops.ones_like(result_so_far),
                                      result_so_far)

    return result_so_far

  @distribution_util.AppendDocstring(_log_sf_note)
  def _log_survival_function(self, y):
    low = self._low
    high = self._high

    # Recall the promise:
    # survival_function(y) := P[Y > y]
    #                       = 0, if y >= high,
    #                       = 1, if y < low,
    #                       = P[X > y], otherwise.

    # P[Y > j] = P[ceiling(Y) > j] since mass is only at integers, not in
    # between.
    j = math_ops.ceil(y)

    # P[X > j], used when low < X < high.
    result_so_far = self.distribution.log_survival_function(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if low is not None:
      result_so_far = array_ops.where(j < low,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)
    if high is not None:
      neg_inf = -np.inf * array_ops.ones_like(result_so_far)
      result_so_far = array_ops.where(j >= high, neg_inf, result_so_far)

    return result_so_far

  @distribution_util.AppendDocstring(_sf_note)
  def _survival_function(self, y):
    low = self._low
    high = self._high

    # Recall the promise:
    # survival_function(y) := P[Y > y]
    #                       = 0, if y >= high,
    #                       = 1, if y < low,
    #                       = P[X > y], otherwise.

    # P[Y > j] = P[ceiling(Y) > j] since mass is only at integers, not in
    # between.
    j = math_ops.ceil(y)

    # P[X > j], used when low < X < high.
    result_so_far = self.distribution.survival_function(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if low is not None:
      result_so_far = array_ops.where(j < low,
                                      array_ops.ones_like(result_so_far),
                                      result_so_far)
    if high is not None:
      result_so_far = array_ops.where(j >= high,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)

    return result_so_far

  def _check_integer(self, value):
    with ops.name_scope("check_integer", values=[value]):
      value = ops.convert_to_tensor(value, name="value")
      if not self.validate_args:
        return value
      dependencies = [distribution_util.assert_integer_form(
          value, message="value has non-integer components.")]
      return control_flow_ops.with_dependencies(dependencies, value)

  @property
  def distribution(self):
    """Base distribution, p(x)."""
    return self._dist