aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/distributions/python/ops/gamma.py
blob: 4ac2b9b4ef894fd9a603ff67bf9c8754f1e23b8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The Gamma distribution class."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import random_ops
from tensorflow.python.ops.distributions import distribution
from tensorflow.python.ops.distributions import kullback_leibler
from tensorflow.python.ops.distributions import util as distribution_util


__all__ = [
    "Gamma",
    "GammaWithSoftplusConcentrationRate",
]


class Gamma(distribution.Distribution):
  """Gamma distribution.

  The Gamma distribution is defined over positive real numbers using
  parameters `concentration` (aka "alpha") and `rate` (aka "beta").

  #### Mathematical Details

  The probability density function (pdf) is,

  ```none
  pdf(x; alpha, beta, x > 0) = x**(alpha - 1) exp(-x beta) / Z
  Z = Gamma(alpha) beta**alpha
  ```

  where:

  * `concentration = alpha`, `alpha > 0`,
  * `rate = beta`, `beta > 0`,
  * `Z` is the normalizing constant, and,
  * `Gamma` is the [gamma function](
    https://en.wikipedia.org/wiki/Gamma_function).

  The cumulative density function (cdf) is,

  ```none
  cdf(x; alpha, beta, x > 0) = GammaInc(alpha, beta x) / Gamma(alpha)
  ```

  where `GammaInc` is the [lower incomplete Gamma function](
  https://en.wikipedia.org/wiki/Incomplete_gamma_function).

  The parameters can be intuited via their relationship to mean and stddev,

  ```none
  concentration = alpha = (mean / stddev)**2
  rate = beta = mean / stddev**2 = concentration / mean
  ```

  Distribution parameters are automatically broadcast in all functions; see
  examples for details.

  WARNING: This distribution may draw 0-valued samples for small `concentration`
  values. See note in `tf.random_gamma` docstring.

  #### Examples

  ```python
  dist = Gamma(concentration=3.0, rate=2.0)
  dist2 = Gamma(concentration=[3.0, 4.0], rate=[2.0, 3.0])
  ```

  """

  def __init__(self,
               concentration,
               rate,
               validate_args=False,
               allow_nan_stats=True,
               name="Gamma"):
    """Construct Gamma with `concentration` and `rate` parameters.

    The parameters `concentration` and `rate` must be shaped in a way that
    supports broadcasting (e.g. `concentration + rate` is a valid operation).

    Args:
      concentration: Floating point tensor, the concentration params of the
        distribution(s). Must contain only positive values.
      rate: Floating point tensor, the inverse scale params of the
        distribution(s). Must contain only positive values.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      TypeError: if `concentration` and `rate` are different dtypes.
    """
    parameters = locals()
    with ops.name_scope(name, values=[concentration, rate]):
      with ops.control_dependencies([
          check_ops.assert_positive(concentration),
          check_ops.assert_positive(rate),
      ] if validate_args else []):
        self._concentration = array_ops.identity(
            concentration, name="concentration")
        self._rate = array_ops.identity(rate, name="rate")
        check_ops.assert_same_float_dtype(
            [self._concentration, self._rate])
    super(Gamma, self).__init__(
        dtype=self._concentration.dtype,
        validate_args=validate_args,
        allow_nan_stats=allow_nan_stats,
        reparameterization_type=distribution.NOT_REPARAMETERIZED,
        parameters=parameters,
        graph_parents=[self._concentration,
                       self._rate],
        name=name)

  @staticmethod
  def _param_shapes(sample_shape):
    return dict(
        zip(("concentration", "rate"), ([ops.convert_to_tensor(
            sample_shape, dtype=dtypes.int32)] * 2)))

  @property
  def concentration(self):
    """Concentration parameter."""
    return self._concentration

  @property
  def rate(self):
    """Rate parameter."""
    return self._rate

  def _batch_shape_tensor(self):
    return array_ops.broadcast_dynamic_shape(
        array_ops.shape(self.concentration),
        array_ops.shape(self.rate))

  def _batch_shape(self):
    return array_ops.broadcast_static_shape(
        self.concentration.get_shape(),
        self.rate.get_shape())

  def _event_shape_tensor(self):
    return constant_op.constant([], dtype=dtypes.int32)

  def _event_shape(self):
    return tensor_shape.scalar()

  @distribution_util.AppendDocstring(
      """Note: See `tf.random_gamma` docstring for sampling details and
      caveats.""")
  def _sample_n(self, n, seed=None):
    return random_ops.random_gamma(
        shape=[n],
        alpha=self.concentration,
        beta=self.rate,
        dtype=self.dtype,
        seed=seed)

  def _log_prob(self, x):
    return self._log_unnormalized_prob(x) - self._log_normalization()

  def _prob(self, x):
    return math_ops.exp(self._log_prob(x))

  def _log_cdf(self, x):
    return math_ops.log(self._cdf(x))

  def _cdf(self, x):
    x = self._maybe_assert_valid_sample(x)
    # Note that igamma returns the regularized incomplete gamma function,
    # which is what we want for the CDF.
    return math_ops.igamma(self.concentration, self.rate * x)

  def _log_unnormalized_prob(self, x):
    x = self._maybe_assert_valid_sample(x)
    return (self.concentration - 1.) * math_ops.log(x) - self.rate * x

  def _log_normalization(self):
    return (math_ops.lgamma(self.concentration)
            - self.concentration * math_ops.log(self.rate))

  def _entropy(self):
    return (self.concentration
            - math_ops.log(self.rate)
            + math_ops.lgamma(self.concentration)
            + ((1. - self.concentration) *
               math_ops.digamma(self.concentration)))

  def _mean(self):
    return self.concentration / self.rate

  def _variance(self):
    return self.concentration / math_ops.square(self.rate)

  def _stddev(self):
    return math_ops.sqrt(self.concentration) / self.rate

  @distribution_util.AppendDocstring(
      """The mode of a gamma distribution is `(shape - 1) / rate` when
      `shape > 1`, and `NaN` otherwise. If `self.allow_nan_stats` is `False`,
      an exception will be raised rather than returning `NaN`.""")
  def _mode(self):
    mode = (self.concentration - 1.) / self.rate
    if self.allow_nan_stats:
      nan = array_ops.fill(
          self.batch_shape_tensor(),
          np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
          name="nan")
      return array_ops.where(self.concentration > 1., mode, nan)
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones([], self.dtype),
              self.concentration,
              message="mode not defined when any concentration <= 1"),
          ], mode)

  def _maybe_assert_valid_sample(self, x):
    check_ops.assert_same_float_dtype(tensors=[x], dtype=self.dtype)
    if not self.validate_args:
      return x
    return control_flow_ops.with_dependencies([
        check_ops.assert_positive(x),
    ], x)


class GammaWithSoftplusConcentrationRate(Gamma):
  """`Gamma` with softplus of `concentration` and `rate`."""

  def __init__(self,
               concentration,
               rate,
               validate_args=False,
               allow_nan_stats=True,
               name="GammaWithSoftplusConcentrationRate"):
    parameters = locals()
    with ops.name_scope(name, values=[concentration, rate]):
      super(GammaWithSoftplusConcentrationRate, self).__init__(
          concentration=nn.softplus(concentration,
                                    name="softplus_concentration"),
          rate=nn.softplus(rate, name="softplus_rate"),
          validate_args=validate_args,
          allow_nan_stats=allow_nan_stats,
          name=name)
    self._parameters = parameters


@kullback_leibler.RegisterKL(Gamma, Gamma)
def _kl_gamma_gamma(g0, g1, name=None):
  """Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma.

  Args:
    g0: instance of a Gamma distribution object.
    g1: instance of a Gamma distribution object.
    name: (optional) Name to use for created operations.
      Default is "kl_gamma_gamma".

  Returns:
    kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1).
  """
  with ops.name_scope(name, "kl_gamma_gamma", values=[
      g0.concentration, g0.rate, g1.concentration, g1.rate]):
    # Result from:
    #   http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps
    # For derivation see:
    #   http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions   pylint: disable=line-too-long
    return (((g0.concentration - g1.concentration)
             * math_ops.digamma(g0.concentration))
            + math_ops.lgamma(g1.concentration)
            - math_ops.lgamma(g0.concentration)
            + g1.concentration * math_ops.log(g0.rate)
            - g1.concentration * math_ops.log(g1.rate)
            + g0.concentration * (g1.rate / g0.rate - 1.))