aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/distributions/python/ops/dirichlet_multinomial.py
blob: 662a7655584b8dc6aeed5251f98dd17fb24f3606 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The DirichletMultinomial distribution class."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import special_math_ops
from tensorflow.python.ops.distributions import distribution
from tensorflow.python.ops.distributions import util as distribution_util


__all__ = [
    "DirichletMultinomial",
]


_dirichlet_multinomial_sample_note = """For each batch of counts,
`value = [n_0, ..., n_{k-1}]`, `P[value]` is the probability that after
sampling `self.total_count` draws from this Dirichlet-Multinomial distribution,
the number of draws falling in class `j` is `n_j`. Since this definition is
[exchangeable](https://en.wikipedia.org/wiki/Exchangeable_random_variables);
different sequences have the same counts so the probability includes a
combinatorial coefficient.

Note: `value` must be a non-negative tensor with dtype `self.dtype`, have no
fractional components, and such that
`tf.reduce_sum(value, -1) = self.total_count`. Its shape must be broadcastable
with `self.concentration` and `self.total_count`."""


class DirichletMultinomial(distribution.Distribution):
  """Dirichlet-Multinomial compound distribution.

  The Dirichlet-Multinomial distribution is parameterized by a (batch of)
  length-`k` `concentration` vectors (`k > 1`) and a `total_count` number of
  trials, i.e., the number of trials per draw from the DirichletMultinomial. It
  is defined over a (batch of) length-`k` vector `counts` such that
  `tf.reduce_sum(counts, -1) = total_count`. The Dirichlet-Multinomial is
  identically the Beta-Binomial distribution when `k = 2`.

  #### Mathematical Details

  The Dirichlet-Multinomial is a distribution over `k`-class counts, i.e., a
  length-`k` vector of non-negative integer `counts = n = [n_0, ..., n_{k-1}]`.

  The probability mass function (pmf) is,

  ```none
  pmf(n; alpha, N) = Beta(alpha + n) / (prod_j n_j!) / Z
  Z = Beta(alpha) / N!
  ```

  where:

  * `concentration = alpha = [alpha_0, ..., alpha_{k-1}]`, `alpha_j > 0`,
  * `total_count = N`, `N` a positive integer,
  * `N!` is `N` factorial, and,
  * `Beta(x) = prod_j Gamma(x_j) / Gamma(sum_j x_j)` is the
    [multivariate beta function](
    https://en.wikipedia.org/wiki/Beta_function#Multivariate_beta_function),
    and,
  * `Gamma` is the [gamma function](
    https://en.wikipedia.org/wiki/Gamma_function).

  Dirichlet-Multinomial is a [compound distribution](
  https://en.wikipedia.org/wiki/Compound_probability_distribution), i.e., its
  samples are generated as follows.

    1. Choose class probabilities:
       `probs = [p_0,...,p_{k-1}] ~ Dir(concentration)`
    2. Draw integers:
       `counts = [n_0,...,n_{k-1}] ~ Multinomial(total_count, probs)`

  The last `concentration` dimension parametrizes a single Dirichlet-Multinomial
  distribution. When calling distribution functions (e.g., `dist.prob(counts)`),
  `concentration`, `total_count` and `counts` are broadcast to the same shape.
  The last dimension of of `counts` corresponds single Dirichlet-Multinomial
  distributions.

  Distribution parameters are automatically broadcast in all functions; see
  examples for details.

  #### Examples

  ```python
  alpha = [1, 2, 3]
  n = 2
  dist = DirichletMultinomial(n, alpha)
  ```

  Creates a 3-class distribution, with the 3rd class is most likely to be drawn.
  The distribution functions can be evaluated on counts.

  ```python
  # counts same shape as alpha.
  counts = [0, 0, 2]
  dist.prob(counts)  # Shape []

  # alpha will be broadcast to [[1, 2, 3], [1, 2, 3]] to match counts.
  counts = [[1, 1, 0], [1, 0, 1]]
  dist.prob(counts)  # Shape [2]

  # alpha will be broadcast to shape [5, 7, 3] to match counts.
  counts = [[...]]  # Shape [5, 7, 3]
  dist.prob(counts)  # Shape [5, 7]
  ```

  Creates a 2-batch of 3-class distributions.

  ```python
  alpha = [[1, 2, 3], [4, 5, 6]]  # Shape [2, 3]
  n = [3, 3]
  dist = DirichletMultinomial(n, alpha)

  # counts will be broadcast to [[2, 1, 0], [2, 1, 0]] to match alpha.
  counts = [2, 1, 0]
  dist.prob(counts)  # Shape [2]
  ```

  """

  # TODO(b/27419586) Change docstring for dtype of concentration once int
  # allowed.
  def __init__(self,
               total_count,
               concentration,
               validate_args=False,
               allow_nan_stats=True,
               name="DirichletMultinomial"):
    """Initialize a batch of DirichletMultinomial distributions.

    Args:
      total_count:  Non-negative floating point tensor, whose dtype is the same
        as `concentration`. The shape is broadcastable to `[N1,..., Nm]` with
        `m >= 0`. Defines this as a batch of `N1 x ... x Nm` different
        Dirichlet multinomial distributions. Its components should be equal to
        integer values.
      concentration: Positive floating point tensor, whose dtype is the
        same as `n` with shape broadcastable to `[N1,..., Nm, k]` `m >= 0`.
        Defines this as a batch of `N1 x ... x Nm` different `k` class Dirichlet
        multinomial distributions.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
    parameters = locals()
    with ops.name_scope(name, values=[total_count, concentration]):
      # Broadcasting works because:
      # * The broadcasting convention is to prepend dimensions of size [1], and
      #   we use the last dimension for the distribution, whereas
      #   the batch dimensions are the leading dimensions, which forces the
      #   distribution dimension to be defined explicitly (i.e. it cannot be
      #   created automatically by prepending). This forces enough explicitness.
      # * All calls involving `counts` eventually require a broadcast between
      #  `counts` and concentration.
      self._total_count = self._maybe_assert_valid_total_count(
          ops.convert_to_tensor(total_count, name="total_count"),
          validate_args)
      self._concentration = self._maybe_assert_valid_concentration(
          ops.convert_to_tensor(concentration,
                                name="concentration"),
          validate_args)
      self._total_concentration = math_ops.reduce_sum(self._concentration, -1)
    super(DirichletMultinomial, self).__init__(
        dtype=self._concentration.dtype,
        validate_args=validate_args,
        allow_nan_stats=allow_nan_stats,
        reparameterization_type=distribution.NOT_REPARAMETERIZED,
        parameters=parameters,
        graph_parents=[self._total_count,
                       self._concentration],
        name=name)

  @property
  def total_count(self):
    """Number of trials used to construct a sample."""
    return self._total_count

  @property
  def concentration(self):
    """Concentration parameter; expected prior counts for that coordinate."""
    return self._concentration

  @property
  def total_concentration(self):
    """Sum of last dim of concentration parameter."""
    return self._total_concentration

  def _batch_shape_tensor(self):
    return array_ops.shape(self.total_concentration)

  def _batch_shape(self):
    return self.total_concentration.get_shape()

  def _event_shape_tensor(self):
    return array_ops.shape(self.concentration)[-1:]

  def _event_shape(self):
    # Event shape depends only on total_concentration, not "n".
    return self.concentration.get_shape().with_rank_at_least(1)[-1:]

  def _sample_n(self, n, seed=None):
    n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
    k = self.event_shape_tensor()[0]
    unnormalized_logits = array_ops.reshape(
        math_ops.log(random_ops.random_gamma(
            shape=[n],
            alpha=self.concentration,
            dtype=self.dtype,
            seed=seed)),
        shape=[-1, k])
    draws = random_ops.multinomial(
        logits=unnormalized_logits,
        num_samples=n_draws,
        seed=distribution_util.gen_new_seed(seed, salt="dirichlet_multinomial"))
    x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k), -2)
    final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
    return array_ops.reshape(x, final_shape)

  @distribution_util.AppendDocstring(_dirichlet_multinomial_sample_note)
  def _log_prob(self, counts):
    counts = self._maybe_assert_valid_sample(counts)
    ordered_prob = (
        special_math_ops.lbeta(self.concentration + counts)
        - special_math_ops.lbeta(self.concentration))
    return ordered_prob + distribution_util.log_combinations(
        self.total_count, counts)

  @distribution_util.AppendDocstring(_dirichlet_multinomial_sample_note)
  def _prob(self, counts):
    return math_ops.exp(self._log_prob(counts))

  def _mean(self):
    return self.total_count * (self.concentration /
                               self.total_concentration[..., array_ops.newaxis])

  @distribution_util.AppendDocstring(
      """The covariance for each batch member is defined as the following:

      ```none
      Var(X_j) = n * alpha_j / alpha_0 * (1 - alpha_j / alpha_0) *
      (n + alpha_0) / (1 + alpha_0)
      ```

      where `concentration = alpha` and
      `total_concentration = alpha_0 = sum_j alpha_j`.

      The covariance between elements in a batch is defined as:

      ```none
      Cov(X_i, X_j) = -n * alpha_i * alpha_j / alpha_0 ** 2 *
      (n + alpha_0) / (1 + alpha_0)
      ```
      """)
  def _covariance(self):
    x = self._variance_scale_term() * self._mean()
    return array_ops.matrix_set_diag(
        -math_ops.matmul(x[..., array_ops.newaxis],
                         x[..., array_ops.newaxis, :]),  # outer prod
        self._variance())

  def _variance(self):
    scale = self._variance_scale_term()
    x = scale * self._mean()
    return x * (self.total_count * scale - x)

  def _variance_scale_term(self):
    """Helper to `_covariance` and `_variance` which computes a shared scale."""
    # We must take care to expand back the last dim whenever we use the
    # total_concentration.
    c0 = self.total_concentration[..., array_ops.newaxis]
    return math_ops.sqrt((1. + c0 / self.total_count) / (1. + c0))

  def _maybe_assert_valid_concentration(self, concentration, validate_args):
    """Checks the validity of the concentration parameter."""
    if not validate_args:
      return concentration
    return control_flow_ops.with_dependencies([
        check_ops.assert_positive(
            concentration,
            message="Concentration parameter must be positive."),
        check_ops.assert_rank_at_least(
            concentration, 1,
            message="Concentration parameter must have >=1 dimensions."),
        check_ops.assert_less(
            1, array_ops.shape(concentration)[-1],
            message="Concentration parameter must have event_size >= 2."),
    ], concentration)

  def _maybe_assert_valid_total_count(self, total_count, validate_args):
    if not validate_args:
      return total_count
    return control_flow_ops.with_dependencies([
        check_ops.assert_non_negative(
            total_count,
            message="total_count must be non-negative."),
        distribution_util.assert_integer_form(
            total_count,
            message="total_count cannot contain fractional values."),
    ], total_count)

  def _maybe_assert_valid_sample(self, counts):
    """Check counts for proper shape, values, then return tensor version."""
    if not self.validate_args:
      return counts
    return control_flow_ops.with_dependencies([
        check_ops.assert_non_negative(
            counts,
            message="counts must be non-negative."),
        check_ops.assert_equal(
            self.total_count, math_ops.reduce_sum(counts, -1),
            message="counts last-dimension must sum to `self.total_count`"),
        distribution_util.assert_integer_form(
            counts,
            message="counts cannot contain fractional components."),
    ], counts)