aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/distributions/python/ops/bijectors/reshape.py
blob: 71ac29038fc12e7d046df8624c6e3e5bb97d3d8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Reshape bijectors."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.distributions import bijector
from tensorflow.python.util import deprecation


__all__ = [
    "Reshape",
]


@deprecation.deprecated(
    "2018-10-01",
    "The TensorFlow Distributions library has moved to "
    "TensorFlow Probability "
    "(https://github.com/tensorflow/probability). You "
    "should update all references to use `tfp.distributions` "
    "instead of `tf.contrib.distributions`.",
    warn_once=True)
def _static_ndims_from_shape(shape):
  return shape.shape.with_rank_at_least(1)[0].value


@deprecation.deprecated(
    "2018-10-01",
    "The TensorFlow Distributions library has moved to "
    "TensorFlow Probability "
    "(https://github.com/tensorflow/probability). You "
    "should update all references to use `tfp.distributions` "
    "instead of `tf.contrib.distributions`.",
    warn_once=True)
def _ndims_from_shape(shape):
  return array_ops.shape(shape)[0]


class Reshape(bijector.Bijector):
  """Reshapes the `event_shape` of a `Tensor`.

  The semantics generally follow that of `tf.reshape()`, with
  a few differences:

  * The user must provide both the input and output shape, so that
    the transformation can be inverted. If an input shape is not
    specified, the default assumes a vector-shaped input, i.e.,
    event_shape_in = (-1,).
  * The `Reshape` bijector automatically broadcasts over the leftmost
    dimensions of its input (`sample_shape` and `batch_shape`); only
    the rightmost `event_ndims_in` dimensions are reshaped. The
    number of dimensions to reshape is inferred from the provided
    `event_shape_in` (`event_ndims_in = len(event_shape_in)`).

  Example usage:
  ```python

  import tensorflow_probability as tfp
  tfb = tfp.bijectors

  r = tfb.Reshape(event_shape_out=[1, -1])

  r.forward([3., 4.])    # shape [2]
  # ==> [[3., 4.]]       # shape [1, 2]

  r.forward([[1., 2.], [3., 4.]])  # shape [2, 2]
  # ==> [[[1., 2.]],
  #      [[3., 4.]]]   # shape [2, 1, 2]

  r.inverse([[3., 4.]])  # shape [1,2]
  # ==> [3., 4.]         # shape [2]

  r.forward_log_det_jacobian(any_value)
  # ==> 0.

  r.inverse_log_det_jacobian(any_value)
  # ==> 0.
  ```

  """

  @deprecation.deprecated(
      "2018-10-01",
      "The TensorFlow Distributions library has moved to "
      "TensorFlow Probability "
      "(https://github.com/tensorflow/probability). You "
      "should update all references to use `tfp.distributions` "
      "instead of `tf.contrib.distributions`.",
      warn_once=True)
  def __init__(self, event_shape_out, event_shape_in=(-1,),
               validate_args=False, name=None):
    """Creates a `Reshape` bijector.

    Args:
      event_shape_out: An `int`-like vector-shaped `Tensor`
        representing the event shape of the transformed output.
      event_shape_in: An optional `int`-like vector-shape `Tensor`
        representing the event shape of the input. This is required in
        order to define inverse operations; the default of (-1,)
        assumes a vector-shaped input.
      validate_args: Python `bool` indicating whether arguments should
        be checked for correctness.
      name: Python `str`, name given to ops managed by this object.

    Raises:
      TypeError: if either `event_shape_in` or `event_shape_out` has
        non-integer `dtype`.
      ValueError: if either of `event_shape_in` or `event_shape_out`
       has non-vector shape (`rank > 1`), or if their sizes do not
       match.
    """
    with ops.name_scope(name, "reshape",
                        values=[event_shape_out, event_shape_in]):

      event_shape_out = ops.convert_to_tensor(event_shape_out,
                                              name="event_shape_out",
                                              preferred_dtype=dtypes.int32)
      event_shape_in = ops.convert_to_tensor(event_shape_in,
                                             name="event_shape_in",
                                             preferred_dtype=dtypes.int32)

      assertions = []
      assertions.extend(self._maybe_check_valid_shape(
          event_shape_out, validate_args))
      assertions.extend(self._maybe_check_valid_shape(
          event_shape_in, validate_args))

      self._assertions = assertions
      self._event_shape_in = event_shape_in
      self._event_shape_out = event_shape_out

      super(Reshape, self).__init__(
          forward_min_event_ndims=0,
          is_constant_jacobian=True,
          validate_args=validate_args,
          name=name or "reshape")

  def _maybe_check_valid_shape(self, shape, validate_args):
    """Check that a shape Tensor is int-type and otherwise sane."""
    if not shape.dtype.is_integer:
      raise TypeError("{} dtype ({}) should be `int`-like.".format(
          shape, shape.dtype.name))

    assertions = []

    ndims = array_ops.rank(shape)
    ndims_ = tensor_util.constant_value(ndims)
    if ndims_ is not None and ndims_ > 1:
      raise ValueError("`{}` rank ({}) should be <= 1.".format(
          shape, ndims_))
    elif validate_args:
      assertions.append(check_ops.assert_less_equal(
          ndims, 1, message="`{}` rank should be <= 1.".format(shape)))

    shape_ = tensor_util.constant_value_as_shape(shape)
    if shape_.is_fully_defined():
      es = np.int32(shape_.as_list())
      if sum(es == -1) > 1:
        raise ValueError(
            "`{}` must have at most one `-1` (given {})"
            .format(shape, es))
      if np.any(es < -1):
        raise ValueError(
            "`{}` elements must be either positive integers or `-1`"
            "(given {})."
            .format(shape, es))
    elif validate_args:
      assertions.extend([
          check_ops.assert_less_equal(
              math_ops.reduce_sum(
                  math_ops.cast(math_ops.equal(shape, -1), dtypes.int32)),
              1,
              message="`{}` elements must have at most one `-1`."
              .format(shape)),
          check_ops.assert_greater_equal(
              shape, -1,
              message="`{}` elements must be either positive integers or `-1`."
              .format(shape)),
      ])
    return assertions

  def _reshape_helper(self, x, event_shape_in, event_shape_out):
    """Reshape only the event_shape of an input `Tensor`."""

    event_ndims_in_ = _static_ndims_from_shape(event_shape_in)
    event_ndims_in = _ndims_from_shape(event_shape_in)
    x_ndims_, x_ndims = x.shape.ndims, array_ops.rank(x)

    assertions = []

    # Ensure x.event_shape is compatible with event_shape_in.
    if (event_ndims_in_ is not None
        and x_ndims_ is not None
        and x.shape.with_rank_at_least(event_ndims_in_)[
            x_ndims_-event_ndims_in_:].is_fully_defined()):
      x_event_shape_, x_event_shape = [  # pylint: disable=unbalanced-tuple-unpacking
          np.int32(x.shape[x_ndims_-event_ndims_in_:])]*2
    else:
      x_event_shape_, x_event_shape = (
          None, array_ops.shape(x)[x_ndims-event_ndims_in:])

    event_shape_in_ = tensor_util.constant_value(event_shape_in)

    if x_event_shape_ is not None and event_shape_in_ is not None:
      # Compare the shape dimensions that are fully specified in the
      # input (i.e., for which event_shape_in is not -1). If x_event_shape
      # matches along all of these dimensions, it is compatible with
      # the desired input shape and any further mismatches (i.e.,
      # imcompatibility with the desired *output* shape) will be
      # caught inside of array_ops.reshape() below.
      x_event_shape_specified_ = x_event_shape_[event_shape_in_ >= 0]
      event_shape_in_specified_ = event_shape_in_[event_shape_in_ >= 0]
      if not np.equal(x_event_shape_specified_,
                      event_shape_in_specified_).all():
        raise ValueError(
            "Input `event_shape` does not match `event_shape_in` ({} vs {}).".
            format(x_event_shape_, event_shape_in_))
    elif self.validate_args:
      # Similarly to the static case, we compare the shape dimensions
      # that are fully specified in the input. We extract these
      # dimensions using boolean_mask(), which requires that the mask
      # have known ndims. We can assume that shape Tensors always have
      # ndims==1 (this assumption is verified inside of
      # _maybe_check_valid_shape), so the reshape operation is just a
      # no-op that formally encodes this fact to make boolean_mask()
      # happy.
      event_shape_mask = array_ops.reshape(event_shape_in >= 0, [-1])
      x_event_shape_specified = array_ops.boolean_mask(x_event_shape,
                                                       event_shape_mask)
      event_shape_in_specified = array_ops.boolean_mask(event_shape_in,
                                                        event_shape_mask)
      assertions.append(check_ops.assert_equal(
          x_event_shape_specified, event_shape_in_specified,
          message="Input `event_shape` does not match `event_shape_in`."))

    if assertions:
      x = control_flow_ops.with_dependencies(assertions, x)

    # get the parts of shape(x) that will not change
    sample_and_batch_shape = array_ops.shape(x)

    ndims = (x.shape.ndims if x.shape.ndims is not None
             else array_ops.rank(x))
    sample_and_batch_shape = sample_and_batch_shape[
        :(ndims - math_ops.abs(event_ndims_in))]

    if (event_ndims_in_ is not None
        and x_ndims_ is not None
        and event_ndims_in_ == x_ndims_):
      # Hack to allow forward/inverse_event_shape to do shape
      # inference by calling this helper method with a dummy Tensor of
      # shape event_shape_in. In this special case,
      # sample_and_batch_shape will be empty so we can preserve static
      # shape information by avoiding the concat operation below
      # (which would be a no-op).
      new_shape = event_shape_out
    else:
      new_shape = array_ops.concat(
          [sample_and_batch_shape, event_shape_out], axis=0)

    return array_ops.reshape(x, new_shape)

  def _forward(self, x):
    with ops.control_dependencies(self._assertions):
      return self._reshape_helper(x,
                                  self._event_shape_in,
                                  self._event_shape_out)

  def _inverse(self, y):
    with ops.control_dependencies(self._assertions):
      return self._reshape_helper(y,
                                  self._event_shape_out,
                                  self._event_shape_in)

  def _inverse_log_det_jacobian(self, y):
    with ops.control_dependencies(self._assertions):
      return constant_op.constant(0., dtype=y.dtype)

  def _forward_log_det_jacobian(self, x):
    with ops.control_dependencies(self._assertions):
      return constant_op.constant(0., dtype=x.dtype)

  def _forward_event_shape(self, input_shape):
    # NOTE: this method and the other *_event_shape* methods
    # compute shape by explicit transformation of a dummy
    # variable. This approach is not generally recommended because it
    # bloats the graph and could in general trigger side effects.
    #
    # In this particular case of the Reshape bijector, the
    # forward and inverse transforms have no side effects, and we
    # believe the reduction in code complexity from delegating the
    # heavy lifting to tf.reshape() is worth the added graph ops.
    # However, you should think hard before implementing this approach
    # in other Bijectors; it is strongly preferred to compute
    # shapes explicitly whenever it's feasible to do so.
    with ops.control_dependencies(self._assertions):
      dummy = array_ops.zeros(dtype=dtypes.float32, shape=input_shape)
      dummy_reshaped = self.forward(dummy)
      return dummy_reshaped.shape

  def _inverse_event_shape(self, output_shape):
    with ops.control_dependencies(self._assertions):
      dummy = array_ops.zeros(dtype=dtypes.float32, shape=output_shape)
      dummy_reshaped = self.inverse(dummy)
      return dummy_reshaped.shape

  def _forward_event_shape_tensor(self, input_shape):
    with ops.control_dependencies(self._assertions):
      dummy = array_ops.zeros(dtype=dtypes.float32, shape=input_shape)
      dummy_reshaped = self.forward(dummy)
      return array_ops.shape(dummy_reshaped)

  def _inverse_event_shape_tensor(self, output_shape):
    with ops.control_dependencies(self._assertions):
      dummy = array_ops.zeros(dtype=dtypes.float32, shape=output_shape)
      dummy_reshaped = self.inverse(dummy)
      return array_ops.shape(dummy_reshaped)