aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/distributions/python/ops/bijectors/affine_impl.py
blob: d44e258bd280b10b694211b4b536a98b13a7f431 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Affine bijector."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.contrib.distributions.python.ops import operator_pd_cholesky
from tensorflow.contrib.distributions.python.ops import operator_pd_diag
from tensorflow.contrib.distributions.python.ops import operator_pd_identity
from tensorflow.contrib.distributions.python.ops import operator_pd_vdvt_update
from tensorflow.contrib.distributions.python.ops.shape import _DistributionShape
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.distributions import bijector


__all__ = [
    "Affine",
]


def _as_tensor(x, name):
  """Convenience to convert to `Tensor` or leave as `None`."""
  return None if x is None else ops.convert_to_tensor(x, name=name)


# TODO(srvasude): Deprecate this class with a dedicated Linear Operator
# corresponding to TriL + V D V.T.
class _TriLPlusVDVTLightweightOperatorPD(object):
  """Helper/hidden class fake an OperatorPD for TriL+VDV.T."""

  def __init__(self, tril, v, diag=None, validate_args=False):
    """Creates an instance of _TriLPlusVDVTLightweightOperatorPD.

    WARNING: This object is not to be used outside of `Affine` where it is
    currently being temporarily used for refactoring purposes.

    Args:
      tril: `Tensor` of shape `[B1,..,Bb, d, d]`.
      v: `Tensor` of shape `[B1,...,Bb, d, k]`.
      diag: `Tensor` of shape `[B1,...,Bb, k, k]` or None
      validate_args: Python `bool` indicating whether arguments should be
        checked for correctness.
    """
    self._m = tril
    self._v = v
    self._validate_args = validate_args
    self._inputs = [tril, v]
    if diag is not None:
      self._inputs += [diag]
      self._d = operator_pd_diag.OperatorPDDiag(diag, verify_pd=validate_args)
      self._d_inv = operator_pd_diag.OperatorPDDiag(1. / diag,
                                                    verify_pd=validate_args)
      return
    if v.get_shape().is_fully_defined():
      v_shape = v.get_shape().as_list()
      id_shape = v_shape[:-2] + [v_shape[-1], v_shape[-1]]
    else:
      v_shape = array_ops.shape(v)
      id_shape = array_ops.concat([v_shape[:-2], [v_shape[-1], v_shape[-1]]], 0)
    self._d = operator_pd_identity.OperatorPDIdentity(
        id_shape, v.dtype, verify_pd=self.validate_args)
    self._d_inv = self._d

  @property
  def inputs(self):
    return self._inputs

  @property
  def dtype(self):
    return self._m.dtype.base_dtype

  @property
  def validate_args(self):
    return self._validate_args

  def rank(self):
    """Returns `rank(self)`."""
    return array_ops.rank(self._m)

  def sqrt_matmul(self, x):
    """Computes `matmul(self, x)`.

    Doesn't actually do the sqrt! Named as such to agree with API.

    Args:
      x: `Tensor`

    Returns:
      self_times_x: `Tensor`
    """
    m_x = math_ops.matmul(self._m, x)
    vt_x = math_ops.matmul(self._v, x, adjoint_a=True)
    d_vt_x = self._d.matmul(vt_x)
    v_d_vt_x = math_ops.matmul(self._v, d_vt_x)
    return m_x + v_d_vt_x

  def sqrt_solve(self, x):
    """Computes `solve(self, x)`.

    Doesn't actually do the sqrt! Named as such to agree with API.

    To compute (M + V D V.T), we use the the Woodbury matrix identity:
      inv(M + V D V.T) = inv(M) - inv(M) V inv(C) V.T inv(M)
    where,
      C = inv(D) + V.T inv(M) V.
    See: https://en.wikipedia.org/wiki/Woodbury_matrix_identity

    Args:
      x: `Tensor`

    Returns:
      inv_of_self_times_x: `Tensor`
    """
    minv_x = linalg_ops.matrix_triangular_solve(self._m, x)
    vt_minv_x = math_ops.matmul(self._v, minv_x, transpose_a=True)
    cinv_vt_minv_x = linalg_ops.matrix_solve(
        self._woodbury_sandwiched_term(), vt_minv_x)
    v_cinv_vt_minv_x = math_ops.matmul(self._v, cinv_vt_minv_x)
    minv_v_cinv_vt_minv_x = linalg_ops.matrix_triangular_solve(
        self._m, v_cinv_vt_minv_x)
    return minv_x - minv_v_cinv_vt_minv_x

  def sqrt_log_abs_det(self):
    """Computes (log o abs o det)(X) for matrix X.

    Doesn't actually do the sqrt! Named as such to agree with API.

    To compute det(M + V D V.T), we use the matrix determinant lemma:
      det(Tril + V D V.T) = det(C) det(D) det(M)
    where C is defined as in `_inverse`, ie,
      C = inv(D) + V.T inv(M) V.

    See: https://en.wikipedia.org/wiki/Matrix_determinant_lemma

    Returns:
      log_abs_det: `Tensor`.
    """
    log_det_c = math_ops.log(math_ops.abs(
        linalg_ops.matrix_determinant(self._woodbury_sandwiched_term())))
    # Reduction is ok because we always prepad inputs to this class.
    log_det_m = math_ops.reduce_sum(math_ops.log(math_ops.abs(
        array_ops.matrix_diag_part(self._m))), axis=[-1])
    return log_det_c + 2. * self._d.sqrt_log_abs_det() + log_det_m

  def _woodbury_sandwiched_term(self):
    """Computes the sandwiched term in the Woodbury identity.

    Computes the "`C`" in the the identity:
       inv(M + V D V.T) = inv(M) - inv(M) V inv(C) V.T inv(M)
    where,
       C = inv(D) + V.T inv(M) V.

    See: https://en.wikipedia.org/wiki/Woodbury_matrix_identity

    Returns:
      woodbury_sandwich_term: A `Tensor` to be used like `C`, above.
    """
    minv_v = linalg_ops.matrix_triangular_solve(self._m, self._v)
    vt_minv_v = math_ops.matmul(self._v, minv_v, adjoint_a=True)
    return self._d_inv.add_to_tensor(vt_minv_v)


class Affine(bijector.Bijector):
  """Compute `Y = g(X; shift, scale) = scale @ X + shift`.

  Here `scale = c * I + diag(D1) + tril(L) + V @ diag(D2) @ V.T`.

  In TF parlance, the `scale` term is logically equivalent to:

  ```python
  scale = (
    scale_identity_multiplier * tf.diag(tf.ones(d)) +
    tf.diag(scale_diag) +
    scale_tril +
    scale_perturb_factor @ diag(scale_perturb_diag) @
      tf.transpose([scale_perturb_factor])
  )
  ```

  The `scale` term is applied without necessarily materializing constituent
  matrices, i.e., the matmul is [matrix-free](
  https://en.wikipedia.org/wiki/Matrix-free_methods) when possible.

  Examples:

  ```python
  # Y = X
  b = Affine()

  # Y = X + shift
  b = Affine(shift=[1., 2, 3])

  # Y = 2 * I @ X.T + shift
  b = Affine(shift=[1., 2, 3],
             scale_identity_multiplier=2.)

  # Y = tf.diag(d1) @ X.T + shift
  b = Affine(shift=[1., 2, 3],
             scale_diag=[-1., 2, 1])         # Implicitly 3x3.

  # Y = (I + v * v.T) @ X.T + shift
  b = Affine(shift=[1., 2, 3],
             scale_perturb_factor=[[1., 0],
                                   [0, 1],
                                   [1, 1]])

  # Y = (diag(d1) + v * diag(d2) * v.T) @ X.T + shift
  b = Affine(shift=[1., 2, 3],
             scale_diag=[1., 3, 3],          # Implicitly 3x3.
             scale_perturb_diag=[2., 1],     # Implicitly 2x2.
             scale_perturb_factor=[[1., 0],
                                   [0, 1],
                                   [1, 1]])

  ```

  """

  def __init__(self,
               shift=None,
               scale_identity_multiplier=None,
               scale_diag=None,
               scale_tril=None,
               scale_perturb_factor=None,
               scale_perturb_diag=None,
               event_ndims=1,
               validate_args=False,
               name="affine"):
    """Instantiates the `Affine` bijector.

    This `Bijector` is initialized with `shift` `Tensor` and `scale` arguments,
    giving the forward operation:

    ```none
    Y = g(X) = scale @ X + shift
    ```

    where the `scale` term is logically equivalent to:

    ```python
    scale = (
      scale_identity_multiplier * tf.diag(tf.ones(d)) +
      tf.diag(scale_diag) +
      scale_tril +
      scale_perturb_factor @ diag(scale_perturb_diag) @
        tf.transpose([scale_perturb_factor])
    )
    ```

    If none of `scale_identity_multiplier`, `scale_diag`, or `scale_tril` are
    specified then `scale += IdentityMatrix`. Otherwise specifying a
    `scale` argument has the semantics of `scale += Expand(arg)`, i.e.,
    `scale_diag != None` means `scale += tf.diag(scale_diag)`.

    Args:
      shift: Floating-point `Tensor`. If this is set to `None`, no shift is
        applied.
      scale_identity_multiplier: floating point rank 0 `Tensor` representing a
        scaling done to the identity matrix.
        When `scale_identity_multiplier = scale_diag = scale_tril = None` then
        `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added
        to `scale`.
      scale_diag: Floating-point `Tensor` representing the diagonal matrix.
        `scale_diag` has shape [N1, N2, ...  k], which represents a k x k
        diagonal matrix.
        When `None` no diagonal term is added to `scale`.
      scale_tril: Floating-point `Tensor` representing the diagonal matrix.
        `scale_diag` has shape [N1, N2, ...  k, k], which represents a k x k
        lower triangular matrix.
        When `None` no `scale_tril` term is added to `scale`.
        The upper triangular elements above the diagonal are ignored.
      scale_perturb_factor: Floating-point `Tensor` representing factor matrix
        with last two dimensions of shape `(k, r)`. When `None`, no rank-r
        update is added to `scale`.
      scale_perturb_diag: Floating-point `Tensor` representing the diagonal
        matrix. `scale_perturb_diag` has shape [N1, N2, ...  r], which
        represents an `r x r` diagonal matrix. When `None` low rank updates will
        take the form `scale_perturb_factor * scale_perturb_factor.T`.
      event_ndims: Scalar `int32` `Tensor` indicating the number of dimensions
        associated with a particular draw from the distribution. Must be 0 or 1.
      validate_args: Python `bool` indicating whether arguments should be
        checked for correctness.
      name: Python `str` name given to ops managed by this object.

    Raises:
      ValueError: if `perturb_diag` is specified but not `perturb_factor`.
      TypeError: if `shift` has different `dtype` from `scale` arguments.
    """
    self._graph_parents = []
    self._name = name
    self._validate_args = validate_args
    # Ambiguous definition of low rank update.
    if scale_perturb_diag is not None and scale_perturb_factor is None:
      raise ValueError("When scale_perturb_diag is specified, "
                       "scale_perturb_factor must be specified.")
    # Special case, only handling a scaled identity matrix. We don't know its
    # dimensions, so this is special cased.
    # We don't check identity_multiplier, since below we set it to 1. if all
    # other scale args are None.
    self._is_only_identity_multiplier = (scale_tril is None and
                                         scale_diag is None and
                                         scale_perturb_factor is None)
    # When no args are specified, pretend the scale matrix is the identity
    # matrix.
    if self._is_only_identity_multiplier and scale_identity_multiplier is None:
      scale_identity_multiplier = 1.
    with self._name_scope("init", values=[
        shift, scale_identity_multiplier, scale_diag, scale_tril,
        scale_perturb_diag, scale_perturb_factor, event_ndims]):
      event_ndims = ops.convert_to_tensor(event_ndims, name="event_ndims")
      if validate_args:
        is_less_than_two = check_ops.assert_less(
            event_ndims, 2,
            message="event_ndims must be 0 or 1")
        event_ndims = control_flow_ops.with_dependencies(
            [is_less_than_two], event_ndims)
      self._shift = _as_tensor(shift, "shift")
      # self._create_scale_operator returns an OperatorPD in all cases except if
      # self._is_only_identity_multiplier; in which case it returns a scalar
      # Tensor.
      self._scale = self._create_scale_operator(
          identity_multiplier=scale_identity_multiplier,
          diag=scale_diag,
          tril=scale_tril,
          perturb_diag=scale_perturb_diag,
          perturb_factor=scale_perturb_factor,
          event_ndims=event_ndims,
          validate_args=validate_args)
      if (self._shift is not None and
          self._shift.dtype.base_dtype != self._scale.dtype.base_dtype):
        raise TypeError("shift.dtype({}) does not match scale.dtype({})".format(
            self._shift.dtype, self._scale.dtype))
      self._shaper = _DistributionShape(
          batch_ndims=self._infer_batch_ndims(),
          event_ndims=event_ndims,
          validate_args=validate_args)
      super(Affine, self).__init__(
          event_ndims=event_ndims,
          graph_parents=(
              [event_ndims] +
              [self._scale] if tensor_util.is_tensor(self._scale)
              else self._scale.inputs +
              [self._shift] if self._shift is not None else []),
          is_constant_jacobian=True,
          dtype=self._scale.dtype,
          validate_args=validate_args,
          name=name)

  def _create_scale_operator(self, identity_multiplier, diag, tril,
                             perturb_diag, perturb_factor, event_ndims,
                             validate_args):
    """Construct `scale` from various components.

    Args:
      identity_multiplier: floating point rank 0 `Tensor` representing a scaling
        done to the identity matrix.
      diag: Floating-point `Tensor` representing the diagonal matrix.
        `scale_diag` has shape [N1, N2, ...  k], which represents a k x k
        diagonal matrix.
      tril: Floating-point `Tensor` representing the diagonal matrix.
        `scale_tril` has shape [N1, N2, ...  k], which represents a k x k lower
        triangular matrix.
      perturb_diag: Floating-point `Tensor` representing the diagonal matrix of
        the low rank update.
      perturb_factor: Floating-point `Tensor` representing factor matrix.
      event_ndims: Scalar `int32` `Tensor` indicating the number of dimensions
        associated with a particular draw from the distribution. Must be 0 or 1
      validate_args: Python `bool` indicating whether arguments should be
        checked for correctness.

    Returns:
      scale. In the case of scaling by a constant, scale is a
      floating point `Tensor`. Otherwise, scale is an `OperatorPD`.

    Raises:
      ValueError: if all of `tril`, `diag` and `identity_multiplier` are `None`.
    """
    identity_multiplier = _as_tensor(identity_multiplier, "identity_multiplier")
    diag = _as_tensor(diag, "diag")
    tril = _as_tensor(tril, "tril")
    perturb_diag = _as_tensor(perturb_diag, "perturb_diag")
    perturb_factor = _as_tensor(perturb_factor, "perturb_factor")

    identity_multiplier = self._maybe_validate_identity_multiplier(
        identity_multiplier, validate_args)

    if perturb_factor is not None:
      perturb_factor = self._process_matrix(
          perturb_factor, min_rank=2, event_ndims=event_ndims)

    if perturb_diag is not None:
      perturb_diag = self._process_matrix(
          perturb_diag, min_rank=1, event_ndims=event_ndims)

    # The following if-statments are ordered by increasingly stronger
    # assumptions in the base matrix, i.e., we process in the order:
    # TriL, Diag, Identity.

    if tril is not None:
      tril = self._preprocess_tril(
          identity_multiplier, diag, tril, event_ndims)
      if perturb_factor is None:
        return operator_pd_cholesky.OperatorPDCholesky(
            tril, verify_pd=validate_args)
      return _TriLPlusVDVTLightweightOperatorPD(
          tril=tril, v=perturb_factor, diag=perturb_diag,
          validate_args=validate_args)

    if diag is not None:
      diag = self._preprocess_diag(identity_multiplier, diag, event_ndims)
      if perturb_factor is None:
        return operator_pd_diag.OperatorPDSqrtDiag(
            diag, verify_pd=validate_args)
      return operator_pd_vdvt_update.OperatorPDSqrtVDVTUpdate(
          operator=operator_pd_diag.OperatorPDDiag(
              diag, verify_pd=validate_args),
          v=perturb_factor,
          diag=perturb_diag,
          verify_pd=validate_args)

    if identity_multiplier is not None:
      if perturb_factor is None:
        return identity_multiplier
      # Infer the shape from the V and D.
      v_shape = array_ops.shape(perturb_factor)
      identity_shape = array_ops.concat([v_shape[:-1], [v_shape[-2]]], 0)
      scaled_identity = operator_pd_identity.OperatorPDIdentity(
          identity_shape,
          perturb_factor.dtype.base_dtype,
          scale=identity_multiplier,
          verify_pd=validate_args)
      return operator_pd_vdvt_update.OperatorPDSqrtVDVTUpdate(
          operator=scaled_identity,
          v=perturb_factor,
          diag=perturb_diag,
          verify_pd=validate_args)

    raise ValueError("One of tril, diag and/or identity_multiplier must be "
                     "specified.")

  def _maybe_validate_identity_multiplier(self, identity_multiplier,
                                          validate_args):
    """Check that the init arg `identity_multiplier` is valid."""
    if identity_multiplier is None or not validate_args:
      return identity_multiplier
    if validate_args:
      identity_multiplier = control_flow_ops.with_dependencies(
          [check_ops.assert_positive(identity_multiplier)],
          identity_multiplier)
    return identity_multiplier

  def _preprocess_tril(self, identity_multiplier, diag, tril, event_ndims):
    """Helper to preprocess a lower triangular matrix."""
    tril = array_ops.matrix_band_part(tril, -1, 0)  # Zero out TriU.
    if identity_multiplier is None and diag is None:
      return self._process_matrix(tril, min_rank=2, event_ndims=event_ndims)
    new_diag = array_ops.matrix_diag_part(tril)
    if identity_multiplier is not None:
      new_diag += identity_multiplier
    if diag is not None:
      new_diag += diag
    tril = array_ops.matrix_set_diag(tril, new_diag)
    return self._process_matrix(tril, min_rank=2, event_ndims=event_ndims)

  def _preprocess_diag(self, identity_multiplier, diag, event_ndims):
    """Helper to preprocess a diagonal matrix."""
    if identity_multiplier is not None:
      diag += identity_multiplier
    return self._process_matrix(diag, min_rank=1, event_ndims=event_ndims)

  def _process_matrix(self, matrix, min_rank, event_ndims):
    """Helper to __init__ which gets matrix in batch-ready form."""
    # Pad the matrix so that matmul works in the case of a matrix and vector
    # input. Keep track if the matrix was padded, to distinguish between a
    # rank 3 tensor and a padded rank 2 tensor.
    # TODO(srvasude): Remove side-effects from functions. Its currently unbroken
    # but error-prone since the function call order may change in the future.
    self._rank_two_event_ndims_one = math_ops.logical_and(
        math_ops.equal(array_ops.rank(matrix), min_rank),
        math_ops.equal(event_ndims, 1))
    left = array_ops.where(self._rank_two_event_ndims_one, 1, 0)
    pad = array_ops.concat(
        [array_ops.ones(
            [left], dtype=dtypes.int32), array_ops.shape(matrix)],
        0)
    return array_ops.reshape(matrix, pad)

  def _infer_batch_ndims(self):
    """Return batch_ndims."""
    if self._is_only_identity_multiplier:
      return 0
    # The real batch dims is one less when we pad in the case of event_ndims =
    # 1, and the rank of the underlying scale being 2. This allows us to have
    # non-negative sample dims.
    return (self._scale.rank() - 2 -
            array_ops.where(self._rank_two_event_ndims_one, 1, 0))

  @property
  def shift(self):
    """The `shift` `Tensor` in `Y = scale @ X + shift`."""
    return self._shift

  @property
  def scale(self):
    """The `scale` `LinearOperator` in `Y = scale @ X + shift`."""
    # TODO(srvasude): Remove this exception once TriLPlusVDVT is properly
    # implemented.
    if isinstance(self._scale, _TriLPlusVDVTLightweightOperatorPD):
      raise NotImplementedError("Cannot access scale when Tril+VDV.T.")
    return self._scale

  def _forward(self, x):
    y = x
    if self._is_only_identity_multiplier:
      y *= self._scale
      if self.shift is not None:
        return y + self.shift
      return  y
    y, sample_shape = self._shaper.make_batch_of_event_sample_matrices(y)
    y = self._scale.sqrt_matmul(y)
    y = self._shaper.undo_make_batch_of_event_sample_matrices(y, sample_shape)
    if self.shift is not None:
      return y + self.shift
    return y

  def _inverse(self, y):
    x = y
    if self.shift is not None:
      x -= self.shift
    if self._is_only_identity_multiplier:
      return x / self._scale
    x, sample_shape = self._shaper.make_batch_of_event_sample_matrices(x)
    x = self._scale.sqrt_solve(x)
    x = self._shaper.undo_make_batch_of_event_sample_matrices(x, sample_shape)
    return x

  def _inverse_log_det_jacobian(self, y):
    return -self._forward_log_det_jacobian(y)

  def _forward_log_det_jacobian(self, x):
    if self._is_only_identity_multiplier:
      # TODO(jvdillon): We don't pad in this case and instead let the fldj be
      # applied via broadcast.
      d = math_ops.cast(array_ops.shape(x)[-1], dtype=self._scale.dtype)
      return math_ops.log(math_ops.abs(self._scale)) * array_ops.where(
          math_ops.equal(self._shaper.event_ndims, 0), 1., d)
    fldj = self._scale.sqrt_log_abs_det()
    # We need to squeeze off the padded dimension.
    start = array_ops.where(self._rank_two_event_ndims_one, 1, 0)
    return array_ops.reshape(fldj, array_ops.shape(fldj)[start:])