aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/distribute/python/cross_tower_utils.py
blob: 9fc1b8895516f64a956accd9290e7bf42ccef330 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for cross_tower_ops."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections as pycoll
import threading

from tensorflow.contrib import nccl
from tensorflow.contrib.all_reduce.python import all_reduce
from tensorflow.contrib.distribute.python import values as value_lib
from tensorflow.python.framework import device as pydev
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import collective_ops
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import math_ops


def aggregate_gradients_using_nccl(tower_grads):
  """Aggregate gradients using nccl allreduce."""
  agg_all_g_and_v = []
  for single_g_and_v in zip(*tower_grads):
    single_grads = [g for g, _ in single_g_and_v]
    agg_grads = nccl.all_sum(single_grads)
    agg_all_g_and_v.append(
        [(g, v) for g, (_, v) in zip(agg_grads, single_g_and_v)])

  agg_all_g_and_v = list(zip(*agg_all_g_and_v))

  return agg_all_g_and_v


def aggregate_gradients_using_hierarchical_copy(avail_devices, tower_grads):
  """Aggregate gradients using hierarchical copies.

  Args:
    avail_devices: available GPU devices.
    tower_grads: List of lists of (gradient, variable) tuples. The outer list
      is over towers. The inner list is over individual gradients.

  Returns:
    The list of (aggregated_gradient, variable), where the gradient has been
      summed across all towers and the variable is chosen from the first tower.
  """
  # This only works for DGX-1 type of machine topology
  # Device peer to peer matrix
  # DMA: 0 1 2 3 4 5 6 7
  # 0:   Y Y Y Y Y N N N
  # 1:   Y Y Y Y N Y N N
  # 2:   Y Y Y Y N N Y N
  # 3:   Y Y Y Y N N N Y
  # 4:   Y N N N Y Y Y Y
  # 5:   N Y N N Y Y Y Y
  # 6:   N N Y N Y Y Y Y
  # 7:   N N N Y Y Y Y Y
  agg_grads = []
  num_devices = len(avail_devices)
  # In the special case of DGX-1 machine topology, the two groups have equal
  # size.
  group_size = num_devices // 2
  for i, single_grads in enumerate(zip(*tower_grads)):
    group_0_main_device = i % num_devices
    group_1_main_device = (group_0_main_device + group_size) % num_devices
    if group_0_main_device < group_size:
      group_0_begin = 0
      group_1_begin = group_size
    else:
      group_0_begin = group_size
      group_1_begin = 0

    # Aggregate the first group.
    group_0_device_grads = single_grads[group_0_begin:
                                        group_0_begin + group_size]
    with ops.device(avail_devices[group_0_main_device]):
      group_0_agg_grads, _ = aggregate_single_gradient_using_copy(
          group_0_device_grads, False, False)

    # Aggregate the second group.
    group_1_device_grads = single_grads[group_1_begin:
                                        group_1_begin + group_size]
    with ops.device(avail_devices[group_1_main_device]):
      group_1_agg_grads, _ = aggregate_single_gradient_using_copy(
          group_1_device_grads, False, False)

    # Aggregate between the groups.
    with ops.device(avail_devices[group_0_main_device]):
      (agg_total_grads, _), _ = aggregate_single_gradient_using_copy(
          [group_0_agg_grads, group_1_agg_grads], False, False)

    # Broadcast the result back into the root of each group.
    with ops.device(avail_devices[group_0_main_device]):
      group_0_agg_grads_bcast = array_ops.identity(agg_total_grads)
    with ops.device(avail_devices[group_1_main_device]):
      group_1_agg_grads_bcast = array_ops.identity(agg_total_grads)

    agg_grads_bcast = []
    for j in range(len(single_grads)):
      with ops.device(avail_devices[j]):
        # Broadcast the result back to each member in the group from the root.
        if (group_0_main_device < group_size) == (j < group_size):
          src_device_grad = group_0_agg_grads_bcast
        else:
          src_device_grad = group_1_agg_grads_bcast
        agg_grads_bcast.append(array_ops.identity(src_device_grad))

    agg_grads.append(
        [(g, v) for g, (_, v) in zip(agg_grads_bcast, single_grads)])

  agg_grads = list(zip(*agg_grads))

  return agg_grads


def aggregate_single_gradient_using_copy(grad_and_vars, use_mean,
                                         check_inf_nan):
  """Calculate the average gradient for a shared variable across all towers.

  Note that this function provides a synchronization point across all towers.

  Args:
    grad_and_vars: A list or tuple of (gradient, variable) tuples. Each
      (gradient, variable) pair within the outer list represents the gradient
      of the variable calculated for a single tower, and the number of pairs
      equals the number of towers.
    use_mean: if True, mean is taken, else sum of gradients is taken.
    check_inf_nan: check grads for nans and infs.

  Returns:
    The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
      gradient has been averaged across all towers. The variable is chosen from
      the first tower. The has_nan_or_inf indicates the grads has nan or inf.
  """
  grads = [g for g, _ in grad_and_vars]
  grad = math_ops.add_n(grads)

  if use_mean and len(grads) > 1:
    grad = array_ops.multiply(grad, 1.0 / len(grads))

  v = grad_and_vars[0][1]
  if check_inf_nan:
    has_nan_or_inf = array_ops.logical_not(
        array_ops.reduce_all(array_ops.is_finite(grads)))
    return (grad, v), has_nan_or_inf
  else:
    return (grad, v), None


def group_device_names(devices, group_size):
  """Group device names into groups of group_size.

  Args:
    devices: a list of canonical device strings.
    group_size: integer which is equal to or greater than 1.

  Returns:
    list of lists of devices, where each inner list is group_size long,
      and each device appears at least once in an inner list.  If
      len(devices) % group_size == 0 then each device will appear exactly once.

  Raises:
    ValueError: if group_size > len(devices)
  """
  num_devices = len(devices)
  if group_size > num_devices:
    raise ValueError(
        'only %d devices, but group_size=%d' % (num_devices, group_size))
  num_groups = (
      num_devices // group_size + (1 if (num_devices % group_size != 0) else 0))
  groups = [[] for i in range(num_groups)]
  for i in range(num_groups * group_size):
    groups[i % num_groups].append(devices[i % num_devices])
  return groups


def split_grads_by_size(threshold_size, device_grads):
  """Break gradients into two sets according to tensor size.

  Args:
    threshold_size: int size cutoff for small vs large tensor.
    device_grads: List of lists of (gradient, variable) tuples.  The outer
        list is over devices. The inner list is over individual gradients.

  Returns:
    small_grads: Subset of device_grads where shape is <= threshold_size
       elements.
    large_grads: Subset of device_grads where shape is > threshold_size
       elements.
  """
  small_grads = []
  large_grads = []
  for dl in device_grads:
    small_dl = []
    large_dl = []
    for (g, v) in dl:
      tensor_size = g.get_shape().num_elements()
      if tensor_size <= threshold_size:
        small_dl.append([g, v])
      else:
        large_dl.append([g, v])
    if small_dl:
      small_grads.append(small_dl)
    if large_dl:
      large_grads.append(large_dl)
  return small_grads, large_grads


# threading.Lock() and threading.local() cannot be pickled and therefore cannot
# be a field of CollectiveKeys. Right now _thread_local is not necessary to be
# an instance member of CollectiveKeys since we always create a new thread for
# each tower.
_lock = threading.Lock()
_thread_local = threading.local()


# TODO(yuefengz): use random key starts to avoid reusing keys?
class CollectiveKeys(object):
  """Class that manages collective keys.

  We need to manage three different keys for collective:

  *Group key*: an integer key to identify the set of cooperative devices.
  Collective ops work under the same set of devices must using the same group
  key.

  *Instance key*: an integer key to identify the set of same counterpart of
  tensors on different devices in a device group that need to be all-reduced.

  "Graph key": an integer key that is unique key graph. This is used to support
  multiple graphs per client session. It must be non-zero and set in the
  `config` argument of each call to `session.run`.
  """

  def __init__(self,
               group_key_start=1,
               instance_key_start=100,
               instance_key_with_id_start=10000):
    """Initializes the object.

    Args:
      group_key_start: the starting integer of group key.
      instance_key_start: the starting integer of instance key.
      instance_key_with_id_start: the starting integer of instance key that is
        recorded with an id.
    """
    self._group_key = group_key_start
    self._group_key_table = dict()

    # For instance keys with ids
    self._instance_key_id_to_key_table = dict()
    self._instance_key_with_id_counter = instance_key_with_id_start

    # For instance keys without ids
    self._instance_key_start = instance_key_start

  def _get_thread_local_object(self):
    # We make instance key without key ids thread local so that it will work
    # with MirroredStrategy and distribute coordinator.
    if not hasattr(_thread_local, 'instance_key'):
      _thread_local.instance_key = self._instance_key_start
    return _thread_local

  def get_group_key(self, devices):
    """Returns a group key for the set of devices.

    Args:
      devices: list of strings naming devices in a collective group.

    Returns:
      int key uniquely identifying the set of device names.
    """
    parsed = [pydev.DeviceSpec.from_string(d) for d in devices]
    # In the between-graph replicated training, different workers need to get
    # the same device key. So we remove the task_type and task_id from the
    # devices.
    # TODO(yuefengz): in the in-graph replicated training, we need to include
    # task_type and task_id.
    names = sorted(['%s:%d' % (d.device_type, d.device_index) for d in parsed])
    key_id = ','.join(names)
    with _lock:
      if key_id not in self._group_key_table:
        new_key = self._group_key
        self._group_key += 1
        self._group_key_table[key_id] = new_key
    return self._group_key_table[key_id]

  def get_instance_key(self, key_id=None):
    """Returns a new instance key for use in defining a collective op.

    Args:
      key_id: optional string. If set, key will be recorded and the same key
        will be returned when the same key_id is provided. If not, an increasing
        instance key will be returned.
    """
    if key_id:
      with _lock:
        if key_id not in self._instance_key_id_to_key_table:
          self._instance_key_with_id_counter += 1
          self._instance_key_id_to_key_table[key_id] = (
              self._instance_key_with_id_counter)
      return self._instance_key_id_to_key_table[key_id]
    else:
      v = self._get_thread_local_object().instance_key
      self._get_thread_local_object().instance_key += 1
      return v


def build_collective_reduce(input_tensors,
                            num_workers,
                            collective_keys,
                            reduction_op='Add',
                            unary_op='Id'):
  """Build a subgraph that does one full all-reduce, using the collective Op.

  Args:
    input_tensors: tensors within a single worker graph that are to be reduced
      together; must be one per device.
    num_workers: total number of workers with identical independent graphs that
      will be doing this same reduction.  The reduction will actually include
      the corresponding tensors at all these workers.
    collective_keys: a CollectiveKeys object.
    reduction_op: string naming the reduction op.
    unary_op: string naming the unary final op.

  Returns:
    An array of final tensors, one per device, computed by the full reduction.

  Raises:
    ValueError: There must be at least two tensors over all the workers.
  """
  group_size = len(input_tensors) * num_workers
  if group_size < 2:
    raise ValueError('num_workers * len(input_tensors) must be 2 or greater')
  devices = [t.device for t in input_tensors]
  num_devices = len(devices)
  group_key = collective_keys.get_group_key(devices)
  instance_key = collective_keys.get_instance_key()
  out_tensors = []
  subdiv_offsets = [0]  # TODO(tucker): maybe support non-default subdiv spec
  for d in range(num_devices):
    with ops.device(devices[d]):
      reduce_op = collective_ops.all_reduce(
          input_tensors[d], group_size, group_key, instance_key, reduction_op,
          unary_op, subdiv_offsets)
      out_tensors.append(reduce_op)
  return out_tensors


def sum_grad_and_var_all_reduce(grad_and_vars,
                                num_workers,
                                alg,
                                gpu_indices,
                                aux_devices=None,
                                num_shards=1):
  """Apply all-reduce algorithm over specified gradient tensors."""
  with ops.name_scope('allreduce'):
    # Note that each grad_and_vars looks like the following:
    #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
    scaled_grads = [g for g, _ in grad_and_vars]
    if alg == 'nccl':
      summed_grads = nccl.all_sum(scaled_grads)
    elif alg == 'xring':
      summed_grads = all_reduce.build_ring_all_reduce(
          scaled_grads, num_workers, num_shards, gpu_indices, math_ops.add)
    elif alg == 'nccl/xring':
      summed_grads = all_reduce.build_nccl_then_ring(scaled_grads, num_shards,
                                                     math_ops.add)
    elif alg == 'nccl/rechd':
      summed_grads = all_reduce.build_nccl_then_recursive_hd(
          scaled_grads, math_ops.add)
    elif alg == 'nccl/pscpu':
      summed_grads = all_reduce.build_nccl_then_shuffle(
          scaled_grads, aux_devices, math_ops.add, math_ops.add_n)
    elif alg == 'pscpu/pscpu':
      second_gather_devices = aux_devices[:num_shards]
      summed_grads = all_reduce.build_shuffle_then_shuffle(
          scaled_grads, aux_devices, second_gather_devices, math_ops.add_n)
    elif alg in ['pscpu', 'psgpu']:
      summed_grads = all_reduce.build_shuffle_all_reduce(
          scaled_grads, aux_devices, math_ops.add_n)
    else:
      raise ValueError('unsupported all_reduce alg: ', alg)

  result = []
  for (_, v), g in zip(grad_and_vars, summed_grads):
    result.append([g, v])
  return result


def sum_gradients_all_reduce(dev_prefixes, tower_grads, num_workers, alg,
                             num_shards, gpu_indices):
  """Apply all-reduce algorithm over specified gradient tensors.

  Args:
    dev_prefixes: list of prefix strings to use to generate PS device names.
    tower_grads: the gradients to reduce.
    num_workers: number of worker processes across entire job.
    alg: the all-reduce algorithm to apply.
    num_shards: alg-specific sharding factor.
    gpu_indices: indices of local GPUs in order usable for ring-reduce.

  Returns:
    list of reduced tensors
  """
  alg_contains_shuffle = any([n in alg for n in ['pscpu', 'psgpu']])
  is_hierarchical = '/' in alg
  if 'pscpu' in alg:
    aux_devices = [prefix + '/cpu:0' for prefix in dev_prefixes]
  elif 'psgpu' in alg:
    aux_devices = [
        prefix + '/gpu:%d' % i
        for i in range(len(gpu_indices))
        for prefix in dev_prefixes
    ]
  else:
    aux_devices = ['/job:localhost/cpu:0']
  # Auxiliary devices for hierarchical all-reduces.
  aux_device_groups = group_device_names(
      aux_devices, num_shards if alg_contains_shuffle else 1)
  group_index = 0
  reduced_gv_list = []
  for grad_and_vars in zip(*tower_grads):
    reduced_gv_list.append(
        sum_grad_and_var_all_reduce(
            grad_and_vars, num_workers, alg, gpu_indices, aux_devices
            if is_hierarchical else aux_device_groups[group_index], num_shards))
    group_index = (group_index + 1) % len(aux_device_groups)
  new_tower_grads = [list(x) for x in zip(*reduced_gv_list)]
  return new_tower_grads


def extract_ranges(index_list, range_size_limit=32):
  """Extract consecutive ranges and singles from index_list.

  Args:
    index_list: List of monotone increasing non-negative integers.
    range_size_limit: Largest size range to return.  If a larger
      consecutive range exists, it will be returned as multiple
      ranges.

  Returns:
    (ranges, singles) where ranges is a list of [first, last] pairs of
      consecutive elements in index_list, and singles is all of the
      other elements, in original order.
  """
  if not index_list:
    return [], []
  first = index_list[0]
  last = first
  ranges = []
  singles = []
  for i in index_list[1:]:
    if i == last + 1 and (last - first) <= range_size_limit:
      last = i
    else:
      if last > first:
        ranges.append([first, last])
      else:
        singles.append(first)
      first = i
      last = i
  if last > first:
    ranges.append([first, last])
  else:
    singles.append(first)
  return ranges, singles


GradPackTuple = pycoll.namedtuple('GradPackTuple', 'indices vars shapes')


def pack_range(key, packing, grad_vars, rng):
  """Form the concatenation of a specified range of gradient tensors.

  Args:
    key: Value under which to store meta-data in packing that will be used
      later to restore the grad_var list structure.
    packing: Dict holding data describing packed ranges of small tensors.
    grad_vars: List of (grad, var) pairs for one tower.
    rng: A pair of integers giving the first, last indices of a consecutive
      range of tensors to be packed.

  Returns:
    A tensor that is the concatenation of all the specified small tensors.
  """
  to_pack = grad_vars[rng[0]:rng[1] + 1]
  members = []
  variables = []
  restore_shapes = []
  with ops.name_scope('pack'):
    for g, v in to_pack:
      variables.append(v)
      restore_shapes.append(g.shape)
      with ops.device(g.device):
        members.append(array_ops.reshape(g, [-1]))
    packing[key] = GradPackTuple(
        indices=range(rng[0], rng[1] + 1),
        vars=variables,
        shapes=restore_shapes)
    with ops.device(members[0].device):
      return array_ops.concat(members, 0)


def unpack_grad_tuple(gv, gpt):
  """Unpack a previously packed collection of gradient tensors.

  Args:
    gv: A (grad, var) pair to be unpacked.
    gpt: A GradPackTuple describing the packing operation that produced gv.

  Returns:
    A list of (grad, var) pairs corresponding to the values that were
     originally packed into gv, maybe following subsequent operations like
     reduction.
  """
  elt_widths = [x.num_elements() for x in gpt.shapes]
  with ops.device(gv[0][0].device):
    with ops.name_scope('unpack'):
      splits = array_ops.split(gv[0], elt_widths)
      unpacked_gv = []
      for idx, s in enumerate(splits):
        unpacked_gv.append((array_ops.reshape(s, gpt.shapes[idx]),
                            gpt.vars[idx]))
  return unpacked_gv


def pack_small_tensors(tower_grads, max_bytes=0, max_group=0):
  """Concatenate small gradient tensors together for reduction.

  Args:
    tower_grads: List of lists of (gradient, variable) tuples.
    max_bytes: Int giving max number of bytes in a tensor that
      may be considered small.
    max_group: Int giving max number of small tensors that may be
      concatenated into one new tensor.

  Returns:
    new_tower_grads, packing where new_tower_grads is identical to
      tower_grads except that all feasible small_tensors have been removed
      from their places and concatenated into larger tensors that are
      now in the front of the list for each tower, and packing contains
      the data necessary to restore the tower_grads structure.

  Look through the first tower for gradients of the same type (float),
  and small size, that are all sequential.  For each such group,
  replace by a new tensor that is a flattened concatenation.  Note
  that the corresponding variable will be absent, which doesn't matter
  because it isn't used during all-reduce.

  Requires:
    Every gv_list in towers must have isomorphic structure including identical
      tensor sizes and types.
  """
  small_indices = []
  large_indices = []
  for idx, (g, _) in enumerate(tower_grads[0]):
    if g.dtype == dtypes.float32 and (4 * g.shape.num_elements()) <= max_bytes:
      small_indices.append(idx)
    else:
      large_indices.append(idx)
  small_ranges, small_singles = extract_ranges(
      small_indices, range_size_limit=max_group)
  large_indices = sorted(large_indices + small_singles)
  num_gv = len(tower_grads[0])
  packing = {}
  if small_ranges:
    new_tower_grads = []
    for dev_idx, gv_list in enumerate(tower_grads):
      assert len(gv_list) == num_gv
      new_gv_list = []
      for r in small_ranges:
        key = '%d:%d' % (dev_idx, len(new_gv_list))
        new_gv_list.append((pack_range(key, packing, gv_list, r),
                            'packing_var_placeholder'))
      for i in large_indices:
        new_gv_list.append(gv_list[i])
      new_tower_grads.append(new_gv_list)
    return new_tower_grads, packing
  else:
    return tower_grads, None


def unpack_small_tensors(tower_grads, packing):
  """Undo the structure alterations to tower_grads done by pack_small_tensors.

  Args:
    tower_grads: List of List of (grad, var) tuples.
    packing: A dict generated by pack_small_tensors describing the changes
      it made to tower_grads.

  Returns:
    new_tower_grads: identical to tower_grads except that concatenations
      of small tensors have been split apart and returned to their original
      positions, paired with their original variables.
  """
  if not packing:
    return tower_grads
  new_tower_grads = []
  num_devices = len(tower_grads)
  num_packed = len(packing.keys()) // num_devices
  for dev_idx, gv_list in enumerate(tower_grads):
    gv_list = list(gv_list)
    new_gv_list = gv_list[num_packed:]
    for i in range(num_packed):
      k = '%d:%d' % (dev_idx, i)
      gpt = packing[k]
      gv = unpack_grad_tuple(gv_list[i], gpt)
      for gi, idx in enumerate(gpt.indices):
        assert idx == gpt.indices[gi]
        new_gv_list.insert(idx, gv[gi])
    new_tower_grads.append(new_gv_list)
  return new_tower_grads


def aggregate_tensors_or_indexed_slices(values, accumulation_fn=math_ops.add_n):
  """Aggregate tensors using `accumulation_fn` and IndexedSlices via concat."""
  if any(isinstance(v, ops.IndexedSlices) for v in values):
    return gradients_impl._AggregateIndexedSlicesGradients(values)  # pylint: disable=protected-access
  else:
    return accumulation_fn(values)


def divide_by_n_tensors_or_indexed_slices(value, n):
  if isinstance(value, ops.IndexedSlices):
    value = gradients_impl._HandleNestedIndexedSlices(value)  # pylint: disable=protected-access
    return ops.IndexedSlices(
        value.values / n, value.indices, value.dense_shape)
  else:
    return value / n


def copy_tensor_or_indexed_slices_to_device(value, device):
  with ops.device(device):
    if isinstance(value, ops.IndexedSlices):
      copied_values = array_ops.identity(value.values)
      copied_indices = array_ops.identity(value.indices)
      copied_shape = array_ops.identity(value.dense_shape)
      result = ops.IndexedSlices(copied_values, copied_indices, copied_shape)
    else:
      result = array_ops.identity(value)
  return result


def contains_indexed_slices(value):
  """Check whether the value is `IndexedSlices` or contains `IndexedSlices`."""
  if isinstance(value, ops.IndexedSlices):
    return True
  elif isinstance(value, (list, tuple)) and value:
    return any(contains_indexed_slices(v) for v in value)
  elif isinstance(value, value_lib.DistributedValues):
    return contains_indexed_slices(list(value._index.values()))  # pylint: disable=protected-access
  elif isinstance(value, value_lib.MapOutput):
    return contains_indexed_slices(value.get())
  else:
    return False