aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/data/python/ops/scan_ops.py
blob: 60ef7efba4bb2bc281bc624ec3f58117ffa9a824 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Scan dataset transformation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections

from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import nest
from tensorflow.python.data.util import sparse
from tensorflow.python.framework import function
from tensorflow.python.framework import ops
from tensorflow.python.ops import gen_dataset_ops


class _ScanDataset(dataset_ops.Dataset):
  """A dataset that scans a function across its input."""

  def __init__(self, input_dataset, initial_state, scan_func):
    """See `scan()` for details."""
    super(_ScanDataset, self).__init__()
    self._input_dataset = input_dataset

    with ops.name_scope("initial_state"):
      self._initial_state = nest.pack_sequence_as(initial_state, [
          ops.convert_to_tensor(t, name="component_%d" % i)
          for i, t in enumerate(nest.flatten(initial_state))
      ])

    # Compute initial values for the state shapes and types based on
    # the initial state. These will be refined by running
    # `tf_scan_func` one or more times below.
    # TODO(b/68937811): Allow the initial state to be a tf.SparseTensor.
    self._state_shapes = nest.pack_sequence_as(
        self._initial_state,
        [t.shape for t in nest.flatten(self._initial_state)])
    self._state_types = nest.pack_sequence_as(
        self._initial_state,
        [t.dtype for t in nest.flatten(self._initial_state)])

    # Will be populated by calling `tf_scan_func`.
    self._output_classes = None
    self._output_shapes = None
    self._output_types = None

    # Iteratively rerun the scan function until reaching a fixed point on
    # `self._state_shapes`.
    need_to_rerun = True
    while need_to_rerun:

      flat_state_shapes = nest.flatten(self._state_shapes)
      flat_state_types = nest.flatten(self._state_types)

      # Create a list in which `tf_scan_func` will store the s
      flat_new_state_shapes = []

      @function.Defun(*(flat_state_types + nest.flatten(
          sparse.as_dense_types(input_dataset.output_types,
                                input_dataset.output_classes))))
      def tf_scan_func(*args):
        """A wrapper for Defun that facilitates shape inference."""
        # Pass in shape information from the state and input_dataset.
        # TODO(b/69424092): Check that neither inputs nor outputs are sparse.
        dense_shapes = sparse.as_dense_shapes(input_dataset.output_shapes,
                                              input_dataset.output_classes)
        for arg, shape in zip(args,
                              flat_state_shapes + nest.flatten(dense_shapes)):
          arg.set_shape(shape)

        pivot = len(flat_state_shapes)
        old_state = nest.pack_sequence_as(self._initial_state, args[:pivot])
        input_value = nest.pack_sequence_as(input_dataset.output_types,
                                            args[pivot:])

        ret = scan_func(old_state, input_value)
        if not isinstance(ret, collections.Sequence) or len(ret) != 2:
          raise TypeError("The scan function must return a pair comprising the "
                          "new state and the output value.")
        new_state, output_value = ret

        flat_new_state = [
            ops.convert_to_tensor(t) for t in nest.flatten(new_state)
        ]
        flat_output_value = [
            ops.convert_to_tensor(t) for t in nest.flatten(output_value)
        ]

        # Extract shape information from the returned values.
        flat_new_state_shapes.extend([t.shape for t in flat_new_state])
        self._output_shapes = nest.pack_sequence_as(
            output_value, [t.shape for t in flat_output_value])

        # Extract and validate type information from the returned values.
        for t, dtype in zip(flat_new_state, flat_state_types):
          if t.dtype != dtype:
            raise TypeError(
                "The element types for the new state must match the initial "
                "state. Expected %s; got %s." %
                (self._state_types, nest.pack_sequence_as(
                    self._state_types, [t.dtype for t in flat_new_state])))
        self._output_classes = nest.pack_sequence_as(
            output_value, [ops.Tensor for _ in flat_output_value])
        self._output_types = nest.pack_sequence_as(
            output_value, [t.dtype for t in flat_output_value])

        return flat_new_state + flat_output_value

      # Use the private method that will execute `tf_scan_func` but delay
      # adding it to the graph in case we need to rerun the function.
      tf_scan_func._create_definition_if_needed()  # pylint: disable=protected-access

      weakened_state_shapes = [
          original.most_specific_compatible_shape(new)
          for original, new in zip(flat_state_shapes, flat_new_state_shapes)
      ]

      need_to_rerun = False
      for original_shape, weakened_shape in zip(flat_state_shapes,
                                                weakened_state_shapes):
        if original_shape.ndims is not None and (
            weakened_shape.ndims is None or
            original_shape.as_list() != weakened_shape.as_list()):
          need_to_rerun = True
          break

      if need_to_rerun:
        # NOTE(mrry): `self._output_shapes` will be overwritten when we rerun
        # `tf_scan_func`.
        self._state_shapes = nest.pack_sequence_as(self._state_shapes,
                                                   weakened_state_shapes)

    self._scan_func = tf_scan_func
    self._scan_func.add_to_graph(ops.get_default_graph())

  def _as_variant_tensor(self):
    input_t = self._input_dataset._as_variant_tensor()  # pylint: disable=protected-access
    return gen_dataset_ops.scan_dataset(
        input_t,
        nest.flatten(self._initial_state),
        self._scan_func.captured_inputs,
        f=self._scan_func,
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)),
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)))

  @property
  def output_classes(self):
    return self._output_classes

  @property
  def output_shapes(self):
    return self._output_shapes

  @property
  def output_types(self):
    return self._output_types


def scan(initial_state, scan_func):
  """A transformation that scans a function across an input dataset.

  This transformation is a stateful relative of @{tf.data.Dataset.map}.
  In addition to mapping `scan_func` across the elements of the input dataset,
  `scan()` accumulates one or more state tensors, whose initial values are
  `initial_state`.

  Args:
    initial_state: A nested structure of tensors, representing the initial state
      of the accumulator.
    scan_func: A function that maps `(old_state, input_element)` to
      `(new_state, output_element). It must take two arguments and return a
      pair of nested structures of tensors. The `new_state` must match the
      structure of `initial_state`.

  Returns:
    A `Dataset` transformation function, which can be passed to
    @{tf.data.Dataset.apply}.
  """
  def _apply_fn(dataset):
    return _ScanDataset(dataset, initial_state, scan_func)

  return _apply_fn