aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/data/python/ops/batching.py
blob: d4ade7adfd2993ee331c293e6a5545516ca8fa45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Batching dataset transformations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import nest
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_dataset_ops
from tensorflow.python.ops import math_ops


def dense_to_sparse_batch(batch_size, row_shape):
  """A transformation that batches ragged elements into `tf.SparseTensor`s.

  Like `Dataset.padded_batch()`, this transformation combines multiple
  consecutive elements of the dataset, which might have different
  shapes, into a single element. The resulting element has three
  components (`indices`, `values`, and `dense_shape`), which
  comprise a `tf.SparseTensor` that represents the same data. The
  `row_shape` represents the dense shape of each row in the
  resulting `tf.SparseTensor`, to which the effective batch size is
  prepended. For example:

  ```python
  # NOTE: The following examples use `{ ... }` to represent the
  # contents of a dataset.
  a = { ['a', 'b', 'c'], ['a', 'b'], ['a', 'b', 'c', 'd'] }

  a.apply(tf.contrib.data.dense_to_sparse_batch(batch_size=2, row_shape=[6])) ==
  {
      ([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1]],  # indices
       ['a', 'b', 'c', 'a', 'b'],                 # values
       [2, 6]),                                   # dense_shape
      ([[0, 0], [0, 1], [0, 2], [0, 3]],
       ['a', 'b', 'c', 'd'],
       [1, 6])
  }
  ```

  Args:
    batch_size: A `tf.int64` scalar `tf.Tensor`, representing the
      number of consecutive elements of this dataset to combine in a
      single batch.
    row_shape: A `tf.TensorShape` or `tf.int64` vector tensor-like
      object representing the equivalent dense shape of a row in the
      resulting `tf.SparseTensor`. Each element of this dataset must
      have the same rank as `row_shape`, and must have size less
      than or equal to `row_shape` in each dimension.

  Returns:
    A `Dataset` transformation function, which can be passed to
    @{tf.data.Dataset.apply}.
  """

  def _apply_fn(dataset):
    return DenseToSparseBatchDataset(dataset, batch_size, row_shape)

  return _apply_fn


def unbatch():
  """A Transformation which splits the elements of a dataset.

  For example, if elements of the dataset are shaped `[B, a0, a1, ...]`,
  where `B` may vary from element to element, then for each element in
  the dataset, the unbatched dataset will contain `B` consecutive elements
  of shape `[a0, a1, ...]`.

  Returns:
    A `Dataset` transformation function, which can be passed to
    @{tf.data.Dataset.apply}.
  """

  def _apply_fn(dataset):

    def unbatch_map(arg, *rest):
      if rest:
        return dataset_ops.Dataset.from_tensor_slices((arg,) + rest)
      else:
        return dataset_ops.Dataset.from_tensor_slices(arg)

    return dataset.flat_map(map_func=unbatch_map)

  return _apply_fn


def filter_irregular_batches(batch_size):
  """Transformation that filters out batches that are not of size batch_size."""

  def _apply_fn(dataset):
    """Function from `Dataset` to `Dataset` that applies the transformation."""
    tensor_batch_size = ops.convert_to_tensor(
        batch_size, dtype=dtypes.int64, name="batch_size")

    flattened = _RestructuredDataset(dataset,
                                     tuple(nest.flatten(dataset.output_types)))

    def _predicate(*xs):
      """Return `True` if this element is a full batch."""
      # Extract the dynamic batch size from the first component of the flattened
      # batched element.
      first_component = xs[0]
      first_component_batch_size = array_ops.shape(
          first_component, out_type=dtypes.int64)[0]

      return math_ops.equal(first_component_batch_size, tensor_batch_size)

    filtered = flattened.filter(_predicate)

    maybe_constant_batch_size = tensor_util.constant_value(tensor_batch_size)

    def _set_first_dimension(shape):
      return shape.merge_with(
          tensor_shape.vector(maybe_constant_batch_size).concatenate(shape[1:]))

    known_shapes = nest.map_structure(_set_first_dimension,
                                      dataset.output_shapes)
    return _RestructuredDataset(filtered, dataset.output_types, known_shapes)

  return _apply_fn


def batch_and_drop_remainder(batch_size):
  """A batching transformation that omits the final small batch (if present).

  Like @{tf.data.Dataset.batch}, this transformation combines
  consecutive elements of this dataset into batches. However, if the batch
  size does not evenly divide the input dataset size, this transformation will
  drop the final smaller element.

  The following example illustrates the difference between this
  transformation and `Dataset.batch()`:

  ```python
  dataset = tf.data.Dataset.range(200)
  batched = dataset.apply(tf.contrib.data.batch_and_drop_remainder(128))
  print(batched.output_shapes)  # ==> "(128,)" (the batch dimension is known)
  ```

  By contrast, `dataset.batch(128)` would yield a two-element dataset with
  shapes `(128,)` and `(72,)`, so the batch dimension would not be statically
  known.

  Args:
    batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
        consecutive elements of this dataset to combine in a single batch.

  Returns:
    A `Dataset` transformation function, which can be passed to
    @{tf.data.Dataset.apply}
  """

  def _apply_fn(dataset):
    """Function from `Dataset` to `Dataset` that applies the transformation."""
    batched = dataset.batch(batch_size)
    return filter_irregular_batches(batch_size)(batched)

  return _apply_fn


def padded_batch_and_drop_remainder(batch_size,
                                    padded_shapes,
                                    padding_values=None):
  """A batching and padding transformation that omits the final small batch.

  Like @{tf.data.Dataset.padded_batch}, this transformation combines
  consecutive elements of this dataset into batches. However, if the batch
  size does not evenly divide the input dataset size, this transformation will
  drop the final smaller element.

  See `@{tf.contrib.data.batch_and_drop_remainder}` for more details.

  Args:
    batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
      consecutive elements of this dataset to combine in a single batch.
    padded_shapes: A nested structure of `tf.TensorShape` or
      `tf.int64` vector tensor-like objects. See
      @{tf.data.Dataset.padded_batch} for details.
    padding_values: (Optional.) A nested structure of scalar-shaped
      `tf.Tensor`. See @{tf.data.Dataset.padded_batch} for details.

  Returns:
    A `Dataset` transformation function, which can be passed to
    @{tf.data.Dataset.apply}
  """

  def _apply_fn(dataset):
    """Function from `Dataset` to `Dataset` that applies the transformation."""
    batched = dataset.padded_batch(
        batch_size, padded_shapes=padded_shapes, padding_values=padding_values)
    return filter_irregular_batches(batch_size)(batched)

  return _apply_fn


class DenseToSparseBatchDataset(dataset_ops.Dataset):
  """A `Dataset` that batches ragged dense elements into `tf.SparseTensor`s."""

  def __init__(self, input_dataset, batch_size, row_shape):
    """See `Dataset.dense_to_sparse_batch()` for more details."""
    super(DenseToSparseBatchDataset, self).__init__()
    if not isinstance(input_dataset.output_types, dtypes.DType):
      raise TypeError("DenseToSparseDataset requires an input whose elements "
                      "have a single component, whereas the input has %r." %
                      input_dataset.output_types)
    self._input_dataset = input_dataset
    self._batch_size = batch_size
    # pylint: disable=protected-access
    self._row_shape = dataset_ops._partial_shape_to_tensor(row_shape)
    # pylint: enable=protected-access

  def _as_variant_tensor(self):
    return gen_dataset_ops.dense_to_sparse_batch_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        self._batch_size,
        self._row_shape,
        output_shapes=self.output_shapes,
        output_types=self.output_types)

  @property
  def output_shapes(self):
    num_elements = tensor_shape.Dimension(None)
    return (tensor_shape.matrix(num_elements, self._row_shape.shape[0] + 1),
            tensor_shape.vector(num_elements),
            tensor_shape.vector(self._row_shape.shape[0] + 1))

  @property
  def output_types(self):
    return (dtypes.int64, self._input_dataset.output_types, dtypes.int64)


class _RestructuredDataset(dataset_ops.Dataset):
  """An internal helper for changing the structure and shape of a dataset."""

  def __init__(self, dataset, output_types, output_shapes=None):
    """Creates a new dataset with the given output types and shapes.

    The given `dataset` must have a structure that is convertible:
    * `dataset.output_types` must be the same as `output_types` module nesting.
    * Each shape in `dataset.output_shapes` must be compatible with each shape
      in `output_shapes` (if given).

    Note: This helper permits "unsafe casts" for shapes, equivalent to using
    `tf.Tensor.set_shape()` where domain-specific knowledge is available.

    Args:
      dataset: A `Dataset` object.
      output_types: A nested structure of `tf.DType` objects.
      output_shapes: (Optional.) A nested structure of `tf.TensorShape` objects.
        If omitted, the shapes will be inherited from `dataset`.

    Raises:
      ValueError: If either `output_types` or `output_shapes` is not compatible
        with the structure of `dataset`.
    """
    super(_RestructuredDataset, self).__init__()
    self._dataset = dataset

    # Validate that the types are compatible.
    output_types = nest.map_structure(dtypes.as_dtype, output_types)
    flat_original_types = nest.flatten(dataset.output_types)
    flat_new_types = nest.flatten(output_types)
    if flat_original_types != flat_new_types:
      raise ValueError(
          "Dataset with output types %r cannot be restructured to have output "
          "types %r" % (dataset.output_types, output_types))

    self._output_types = output_types

    if output_shapes is None:
      # Inherit shapes from the original `dataset`.
      self._output_shapes = nest.pack_sequence_as(output_types,
                                                  nest.flatten(
                                                      dataset.output_shapes))
    else:
      # Validate that the shapes are compatible.
      nest.assert_same_structure(output_types, output_shapes)
      flat_original_shapes = nest.flatten(dataset.output_shapes)
      flat_new_shapes = nest.flatten_up_to(output_types, output_shapes)

      for original_shape, new_shape in zip(flat_original_shapes,
                                           flat_new_shapes):
        if not original_shape.is_compatible_with(new_shape):
          raise ValueError(
              "Dataset with output shapes %r cannot be restructured to have "
              "incompatible output shapes %r" % (dataset.output_shapes,
                                                 output_shapes))
      self._output_shapes = nest.map_structure_up_to(
          output_types, tensor_shape.as_shape, output_shapes)

  def _as_variant_tensor(self):
    return self._dataset._as_variant_tensor()  # pylint: disable=protected-access

  @property
  def output_types(self):
    return self._output_types

  @property
  def output_shapes(self):
    return self._output_shapes


class _MapAndBatchDataset(dataset_ops.MapDataset):
  """A `Dataset` that maps a function over a batch of elements."""

  def __init__(self, input_dataset, map_func, batch_size, num_parallel_batches):
    """See `Dataset.map()` for details."""
    super(_MapAndBatchDataset, self).__init__(input_dataset, map_func)

    self._batch_size = ops.convert_to_tensor(
        batch_size, dtype=dtypes.int64, name="batch_size")
    self._num_parallel_batches = ops.convert_to_tensor(
        num_parallel_batches, dtype=dtypes.int64, name="num_parallel_batches")

  def _as_variant_tensor(self):
    # pylint: disable=protected-access
    input_resource = self._input_dataset._as_variant_tensor()
    return gen_dataset_ops.map_and_batch_dataset(
        input_resource,
        self._map_func.captured_inputs,
        f=self._map_func,
        batch_size=self._batch_size,
        num_parallel_batches=self._num_parallel_batches,
        output_types=nest.flatten(self.output_types),
        output_shapes=nest.flatten(self.output_shapes))
    # pylint: enable=protected-access

  @property
  def output_shapes(self):
    return nest.pack_sequence_as(self._output_shapes, [
        tensor_shape.vector(tensor_util.constant_value(
            self._batch_size)).concatenate(s)
        for s in nest.flatten(self._output_shapes)
    ])

  @property
  def output_types(self):
    return self._output_types


def map_and_batch(map_func, batch_size, num_parallel_batches=1):
  """Fused implementation of `map` and `batch`.

  Maps `map_func` across `batch_size` consecutive elements of this dataset
  and then combines them into a batch. Similarly to `batch_and_drop_remainder`,
  if the batch size does not evenly divide the input dataset size, this
  transformation will drop the final smaller element.


  Functionally, it is equivalent to `map` followed by
  `batch_and_drop_remainder`. However, by fusing the two transformations
  together, the implementation can be more efficient. This transformation is a
  stop gap solution for performance critical workloads. Once automatic input
  pipeline optimization are implemented, the fusing of map and batch will not
  need to be exposed at the API level and this method will be removed.

  Args:
    map_func: A function mapping a nested structure of tensors to another
      nested structure of tensors.
    batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
      consecutive elements of this dataset to combine in a single batch.
    num_parallel_batches: A `tf.int64` scalar `tf.Tensor`, representing the
      number of batches to create in parallel. On one hand, higher values can
      help mitigate the effect of stragglers. On the other hand, higher values
      can increasing contention if CPU is scarce.

  Returns:
    A `Dataset` transformation function, which can be passed to
    @{tf.contrib.data.Dataset.apply}.
  """

  def _apply_fn(dataset):
    return _MapAndBatchDataset(dataset, map_func, batch_size,
                               num_parallel_batches)

  return _apply_fn