aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/data/kernels/unique_dataset_op.cc
blob: 6fbf5d2ebb598132a7e8433608e67436a172b615 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/framework/dataset.h"
#include "tensorflow/core/framework/partial_tensor_shape.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/lib/hash/hash.h"

namespace tensorflow {

namespace {

// See documentation in ../ops/dataset_ops.cc for a high-level
// description of the following op.

class UniqueDatasetOp : public UnaryDatasetOpKernel {
 public:
  explicit UniqueDatasetOp(OpKernelConstruction* ctx)
      : UnaryDatasetOpKernel(ctx) {}

  void MakeDataset(OpKernelContext* ctx, DatasetBase* input,
                   DatasetBase** output) override {
    OP_REQUIRES(ctx, input->output_dtypes().size() == 1,
                errors::InvalidArgument("UniqueDataset only supports "
                                        "inputs with a single component."));

    DataType input_dtype = input->output_dtypes()[0];
    OP_REQUIRES(ctx,
                input_dtype == DT_INT32 || input_dtype == DT_INT64 ||
                    input_dtype == DT_STRING,
                errors::InvalidArgument(
                    "UniqueDataset only supports inputs with a single "
                    "`tf.int32`, `tf.int64`, or `tf.string` component."));

    *output = new Dataset(ctx, input);
  }

 private:
  class Dataset : public DatasetBase {
   public:
    Dataset(OpKernelContext* ctx, const DatasetBase* input)
        : DatasetBase(DatasetContext(ctx)), input_(input) {
      input_->Ref();
    }

    ~Dataset() override { input_->Unref(); }

    std::unique_ptr<IteratorBase> MakeIteratorInternal(
        const string& prefix) const override {
      return std::unique_ptr<IteratorBase>(
          new Iterator({this, strings::StrCat(prefix, "::Unique")}));
    }

    const DataTypeVector& output_dtypes() const override {
      return input_->output_dtypes();
    }

    const std::vector<PartialTensorShape>& output_shapes() const override {
      return input_->output_shapes();
    }

    string DebugString() const override {
      return strings::StrCat("UniqueDatasetOp::Dataset");
    }

   protected:
    Status AsGraphDefInternal(SerializationContext* ctx,
                              DatasetGraphDefBuilder* b,
                              Node** output) const override {
      Node* input_graph_node = nullptr;
      TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node));
      TF_RETURN_IF_ERROR(b->AddDataset(this, {input_graph_node}, output));
      return Status::OK();
    }

   private:
    class Iterator : public DatasetIterator<Dataset> {
     public:
      explicit Iterator(const typename Iterator::Params& params)
          : DatasetIterator<Dataset>(params) {}

      Status Initialize(IteratorContext* ctx) override {
        return dataset()->input_->MakeIterator(ctx, prefix(), &input_impl_);
      }

      Status GetNextInternal(IteratorContext* ctx,
                             std::vector<Tensor>* out_tensors,
                             bool* end_of_sequence) override {
        mutex_lock l(mu_);
        bool saw_new_value;
        do {
          saw_new_value = false;
          out_tensors->clear();
          TF_RETURN_IF_ERROR(
              input_impl_->GetNext(ctx, out_tensors, end_of_sequence));
          if (*end_of_sequence) {
            break;
          }
          DCHECK_EQ(1, out_tensors->size());
          saw_new_value = unique_elements_.insert((*out_tensors)[0]).second;
        } while (!saw_new_value);
        return Status::OK();
      }

     protected:
      Status SaveInternal(IteratorStateWriter* writer) override {
        mutex_lock l(mu_);
        if (input_impl_) {
          TF_RETURN_IF_ERROR(SaveInput(writer, input_impl_));
        } else {
          TF_RETURN_IF_ERROR(
              writer->WriteScalar(full_name("input_impl_empty"), ""));
        }
        TF_RETURN_IF_ERROR(writer->WriteScalar(
            full_name("unique_elements_size"), unique_elements_.size()));
        size_t i = 0;
        for (const Tensor& t : unique_elements_) {
          TF_RETURN_IF_ERROR(writer->WriteTensor(
              full_name(strings::StrCat("unique_elements[", i++, "]")), t));
        }
        return Status::OK();
      }

      Status RestoreInternal(IteratorContext* ctx,
                             IteratorStateReader* reader) override {
        mutex_lock l(mu_);
        if (!reader->Contains(full_name("input_impl_empty"))) {
          TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_));
        } else {
          input_impl_.reset();
        }
        int64 num_unique_elements;
        unique_elements_.clear();
        TF_RETURN_IF_ERROR(reader->ReadScalar(full_name("unique_elements_size"),
                                              &num_unique_elements));
        for (int64 i = 0; i < num_unique_elements; ++i) {
          Tensor unique_element;
          TF_RETURN_IF_ERROR(reader->ReadTensor(
              full_name(strings::StrCat("unique_elements[", i, "]")),
              &unique_element));
          auto insert_result = unique_elements_.insert(unique_element);
          if (!insert_result.second) {
            return errors::InvalidArgument(
                "Checkpoint contained two unique elements with the same "
                "value.");
          }
        }
        return Status::OK();
      }

     private:
      struct TensorHash {
        size_t operator()(const Tensor& t) const {
          if (t.dtype() == DT_INT32 || t.dtype() == DT_INT64) {
            return Hash64(t.tensor_data().data(), t.tensor_data().size());
          } else {
            DCHECK_EQ(DT_STRING, t.dtype());
            auto flat_t = t.flat<string>();
            uint64 hash = 0;
            for (int64 i = 0; i < t.NumElements(); ++i) {
              hash = Hash64Combine(hash, Hash64(flat_t(i)));
            }
            return static_cast<size_t>(hash);
          }
        }
      };

      struct TensorKeyEqual {
        bool operator()(const Tensor& lhs, const Tensor& rhs) const {
          if (lhs.shape() != rhs.shape() || lhs.dtype() != rhs.dtype()) {
            return false;
          }
          switch (lhs.dtype()) {
#define HANDLE_TYPE(T)                                     \
  case T:                                                  \
    do {                                                   \
      auto lhs_flat = lhs.flat<EnumToDataType<T>::Type>(); \
      auto rhs_flat = rhs.flat<EnumToDataType<T>::Type>(); \
      for (int64 i = 0; i < lhs.NumElements(); ++i) {      \
        if (lhs_flat(i) != rhs_flat(i)) {                  \
          return false;                                    \
        }                                                  \
      }                                                    \
      return true;                                         \
    } while (0)

            HANDLE_TYPE(DT_INT32);
            HANDLE_TYPE(DT_INT64);
            HANDLE_TYPE(DT_STRING);
            default:
              LOG(FATAL) << "UniqueDataset unhandled data type: "
                         << DataTypeString(lhs.dtype());
          }
        }
      };

      mutex mu_;
      std::unique_ptr<IteratorBase> input_impl_ GUARDED_BY(mu_);
      std::unordered_set<Tensor, TensorHash, TensorKeyEqual> unique_elements_
          GUARDED_BY(mu_);
    };

    const DatasetBase* const input_;
  };
};

REGISTER_KERNEL_BUILDER(Name("UniqueDataset").Device(DEVICE_CPU),
                        UniqueDatasetOp);

}  // namespace

}  // namespace tensorflow