aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/cudnn_rnn/python/layers/cudnn_rnn.py
blob: d58198faf353aab68430d2fa153a18de359112de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Cudnn RNN operators."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.contrib.cudnn_rnn.python.ops import cudnn_rnn_ops
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.layers import base as base_layer
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.platform import tf_logging as logging


CUDNN_RNN_UNIDIRECTION = cudnn_rnn_ops.CUDNN_RNN_UNIDIRECTION
CUDNN_RNN_BIDIRECTION = cudnn_rnn_ops.CUDNN_RNN_BIDIRECTION
CUDNN_LSTM = cudnn_rnn_ops.CUDNN_LSTM
CUDNN_GRU = cudnn_rnn_ops.CUDNN_GRU
CUDNN_RNN_RELU = cudnn_rnn_ops.CUDNN_RNN_RELU
CUDNN_RNN_TANH = cudnn_rnn_ops.CUDNN_RNN_TANH

# Half for cell input, half for hidden states.
CUDNN_LSTM_PARAMS_PER_LAYER = cudnn_rnn_ops.CUDNN_LSTM_PARAMS_PER_LAYER
CUDNN_GRU_PARAMS_PER_LAYER = cudnn_rnn_ops.CUDNN_GRU_PARAMS_PER_LAYER
CUDNN_RNN_TANH_PARAMS_PER_LAYER = cudnn_rnn_ops.CUDNN_RNN_TANH_PARAMS_PER_LAYER
CUDNN_RNN_RELU_PARAMS_PER_LAYER = cudnn_rnn_ops.CUDNN_RNN_RELU_PARAMS_PER_LAYER

CUDNN_INPUT_LINEAR_MODE = cudnn_rnn_ops.CUDNN_INPUT_LINEAR_MODE
CUDNN_INPUT_SKIP_MODE = cudnn_rnn_ops.CUDNN_INPUT_SKIP_MODE
CUDNN_INPUT_AUTO_MODE = cudnn_rnn_ops.CUDNN_INPUT_AUTO_MODE


__all__ = ["CudnnLSTM", "CudnnGRU", "CudnnRNNTanh", "CudnnRNNRelu"]


class _CudnnRNN(base_layer.Layer):
  # pylint:disable=line-too-long
  """Abstract class for RNN layers with Cudnn implementation.

  Cudnn RNNs have two major differences from other platform-independent RNNs tf
  provides:
  * Cudnn LSTM and GRU are mathematically different from their tf counterparts.
    (e.g. @{tf.contrib.rnn.LSTMBlockCell} and @{tf.nn.rnn_cell.GRUCell}.
  * Cudnn-trained checkpoints are not directly compatible with tf RNNs:
    * They use a single opaque parameter buffer for the entire (possibly)
      multi-layer multi-directional RNN; Whereas tf RNN weights are per-cell and
      layer.
    * The size and layout of the parameter buffers may change between
      CUDA/CuDNN/GPU generations. Because of that, the opaque parameter variable
      does not have a static shape and is not partitionable. Instead of using
      partitioning to alleviate the PS's traffic load, try building a
      multi-tower model and do gradient aggregation locally within the host
      before updating the PS. See https://www.tensorflow.org/performance/performance_models#parameter_server_variables
      for a detailed performance guide.

  Consequently, if one plans to use Cudnn trained models on both GPU and CPU
  for inference and training, one needs to:
  * Create a CudnnOpaqueParamsSaveable subclass object to save RNN params in
    canonical format. (This is done for you automatically during layer building
    process.)
  * When not using a Cudnn RNN class, use CudnnCompatibleRNN classes to load the
    checkpoints. These classes are platform-independent and perform the same
    computation as Cudnn for training and inference.
  Similarly, CudnnCompatibleRNN-trained checkpoints can be loaded by CudnnRNN
  classes seamlessly.

  Below is a typical workflow(using LSTM as an example):
  for detailed performance guide.

  # Use Cudnn-trained checkpoints with CudnnCompatibleRNNs
  ```python
  with tf.Graph().as_default():
    lstm = CudnnLSTM(num_layers, num_units, direction, ...)

    outputs, output_states = lstm(inputs, initial_states, training=True)

    # If user plans to delay calling the cell with inputs, one can do
    # lstm.build(input_shape)

    saver = Saver()

    # training subgraph
    ...

    # Once in a while save the model.
    saver.save(save_path)

  # Inference subgraph for unidirectional RNN on, e.g., CPU or mobile.
  with tf.Graph().as_default():
    single_cell = lambda: tf.contrib.cudnn_rnn.CudnnCompatibleLSTM(num_units)

    # NOTE: Even if there's only one layer, the cell needs to be wrapped in
    # MultiRNNCell.
    cell = tf.nn.rnn_cell.MultiRNNCell(
      [single_cell() for _ in range(num_layers)])

    # Leave the scope arg unset.
    outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, initial_state, ...)

    saver = Saver()

    # Create session
    sess = ...

    # Restores
    saver.restore(sess, save_path)

  # Inference subgraph for bidirectional RNN
  with tf.Graph().as_default():
    single_cell = lambda: tf.contrib.cudnn_rnn.CudnnCompatibleLSTM(num_units)
    cells_fw = [single_cell() for _ in range(num_layers)]
    cells_bw = [single_cell() for _ in range(num_layers)]

    # Leave the scope arg unset.
    (outputs, output_state_fw,
     output_state_bw) = tf.contrib.rnn.stack_bidirectional_dynamic_rnn(
         cells_fw, cells_bw, inputs, ...)
    saver = Saver()

    # Create session
    sess = ...

    # Restores
    saver.restore(sess, save_path)
  ```
  """
  # pylint:enable=line-too-long

  # TODO(allenl): Document object-based saving and checkpoint compatibility once
  # it's implemented for more cuDNN Layers.

  # The following are constants defined by subclasses.
  # Type of RNN cell.
  _rnn_mode = None
  # Number of cell weights(or biases) per layer.
  _num_params_per_layer = None
  # Custom SaveableObject class for the CudnnRNN class.
  _saveable_cls = None

  def __init__(self,
               num_layers,
               num_units,
               input_mode=CUDNN_INPUT_LINEAR_MODE,
               direction=CUDNN_RNN_UNIDIRECTION,
               dropout=0.,
               seed=None,
               dtype=dtypes.float32,
               kernel_initializer=None,
               bias_initializer=None,
               name=None):
    """Creates a CudnnRNN model from model spec.

    Args:
      num_layers: the number of layers for the RNN model.
      num_units: the number of units within the RNN model.
      input_mode: indicate whether there is a linear projection between the
          input and the actual computation before the first layer. It can be
          'linear_input', 'skip_input' or 'auto_select'.
          'linear_input' (default) always applies a linear projection of input
          onto RNN hidden state. (standard RNN behavior).
          'skip_input' is only allowed when input_size == num_units;
          'auto_select' implies 'skip_input' when input_size == num_units;
          otherwise, it implies 'linear_input'.
      direction: the direction model that the model operates. Can be either
          'unidirectional' or 'bidirectional'
      dropout: dropout rate, a number between [0, 1]. Dropout is applied between
          each layer (no dropout is applied for a model with a single layer).
          When set to 0, dropout is disabled.
      seed: the op seed used for initializing dropout. See @{tf.set_random_seed}
          for behavior.
      dtype: tf.float16, tf.float32 or tf.float64
      kernel_initializer: starting value to initialize the weight.
      bias_initializer: starting value to initialize the bias
        (default is all zeros).
      name: VariableScope for the created subgraph; defaults to class name.
        This only serves the default scope if later no scope is specified when
        invoking __call__().

    Raises:
      ValueError: if direction is invalid. Or dtype is not supported.
    """
    super(_CudnnRNN, self).__init__(dtype=dtype, name=name)
    cudnn_rnn_ops.check_direction(direction)
    cudnn_rnn_ops.check_input_mode(input_mode)

    if dtype not in [dtypes.float16, dtypes.float32, dtypes.float64]:
      raise ValueError(
          "Only support float16, float32, float64, provided %s" % dtype)
    # Layer self.dtype is type name, the original DType object is kept here.
    self._plain_dtype = dtype
    self._num_layers = num_layers
    self._num_units = num_units
    self._input_mode = input_mode
    self._direction = direction
    self._dropout = dropout
    self._seed = seed
    self._kernel_initializer = kernel_initializer
    self._bias_initializer = bias_initializer
    # Init input_size to None, which will be set after build().
    self._input_size = None
    self._saveable = None

  @property
  def num_layers(self):
    return self._num_layers

  @property
  def num_units(self):
    return self._num_units

  @property
  def input_mode(self):
    """Input mode of first layer.

    Indicates whether there is a linear projection between the input and the
    actual computation before the first layer. It can be
    * 'linear_input': (default) always applies a linear projection of input
      onto RNN hidden state. (standard RNN behavior)
    * 'skip_input': 'skip_input' is only allowed when input_size == num_units.
    * 'auto_select'. implies 'skip_input' when input_size == num_units;
      otherwise, it implies 'linear_input'.

    Returns:
      'linear_input', 'skip_input' or 'auto_select'.
    """
    return self._input_mode

  @property
  def input_size(self):
    if not self._input_size:
      raise ValueError(
          "\'input_size\' is unknown since layer has not been built.")
    return self._input_size

  @property
  def rnn_mode(self):
    """Type of RNN cell used.

    Returns:
      `lstm`, `gru`, `rnn_relu` or `rnn_tanh`.
    """
    return self._rnn_mode

  @property
  def direction(self):
    """Returns `unidirectional` or `bidirectional`."""
    return self._direction

  @property
  def num_dirs(self):
    return 1 if self._direction == CUDNN_RNN_UNIDIRECTION else 2

  @property
  def saveable(self):
    return self._saveable

  @property
  def canonical_weight_shapes(self):
    """Shapes of Cudnn canonical weight tensors."""
    if not self._input_size:
      raise RuntimeError(
          "%s.canonical_weight_shapes invoked before input shape is known" %
          type(self).__name__)

    shapes = []
    for i in range(self._num_layers):
      shapes.extend(self._canonical_weight_shape(i))
    return shapes

  @property
  def canonical_bias_shapes(self):
    """Shapes of Cudnn canonical bias tensors."""
    return self._canonical_bias_shape(0) * self._num_layers

  def _update_trainable_weights(self, getter, *args, **kwargs):
    """Custom getter for layer variables."""
    # Add variables to layer's `(non_)trainable_weights` list(s).
    variable = getter(*args, **kwargs)
    trainable = kwargs.get("trainable", True)
    if trainable and variable not in self._trainable_weights:
      self._trainable_weights.append(variable)
    elif not trainable and variable not in self._non_trainable_weights:
      self._non_trainable_weights.append(variable)
    return variable

  def build(self, input_shape):
    """Create variables of the Cudnn RNN.

    It can be called manually before `__call__()` or automatically through
    `__call__()`. In the former case, subsequent `__call__()`s will skip
    creating variables.
    Args:
      input_shape: network input tensor shape, a python list or a TensorShape
        object with 3 dimensions.
    Raises:
      ValueError: if input_shape has wrong dimension or unknown 3rd dimension.
    """
    if self.built:
      return

    input_shape = tensor_shape.TensorShape(input_shape)
    if input_shape.ndims != 3:
      raise ValueError("Expecting input_shape with 3 dims, got %d" %
                       input_shape.ndims)
    if input_shape[-1].value is None:
      raise ValueError("The last dimension of the inputs to `CudnnRNN` "
                       "should be defined. Found `None`.")
    self._input_size = input_shape[-1].value
    self.input_spec = base_layer.InputSpec(ndim=3, axes={-1: self._input_size})

    self._set_scope(None)

    # Not using base class `add_variable()` since the it calls
    # `tf.get_variable()` with a callable initializer whereas here with a
    # tensor. The difference is mandated to support forward-compatibility with
    # Cudnn.
    with vs.variable_scope(
        self._scope,
        reuse=self.built,
        custom_getter=self._update_trainable_weights):
      if self._kernel_initializer is None:
        self._kernel_initializer = init_ops.glorot_uniform_initializer(
            seed=self._seed, dtype=self._plain_dtype)
      if self._bias_initializer is None:
        self._bias_initializer = init_ops.constant_initializer(
            0.0, dtype=self._plain_dtype)

      weights = [
          self._kernel_initializer(sp, dtype=self._plain_dtype)
          for sp in self.canonical_weight_shapes
      ]
      biases = [
          self._bias_initializer(sp, dtype=self._plain_dtype)
          for sp in self.canonical_bias_shapes
      ]
      opaque_params_t = self._canonical_to_opaque(weights, biases)

      if vs.get_variable_scope().partitioner is not None:
        logging.warn(
            "Partitioner is not supported for Cudnn RNN layer variables, using "
            "it will create forward-compatibility issues with future "
            "CUDA/CuDNN generations.")
      # Initialize opaque params with a tensor.
      self.kernel = vs.get_variable(
          "opaque_kernel", dtype=self._plain_dtype,
          initializer=opaque_params_t, validate_shape=False)
    # Create saveable in the outer scope of the cudnn subgraph, such that
    # alternative subgraph with platform-independent rnn cells can load the
    # checkpoints directly.
    if not (self.built or vs.get_variable_scope().reuse is True):
      self._create_saveable()
    self.built = True

  def _gather_saveables_for_checkpoint(self):
    raise NotImplementedError(
        "This cell does not yet support object-based saving. File a feature "
        "request if this limitation bothers you.")

  def call(self, inputs, initial_state=None, training=True):
    """Runs the forward step for the RNN model.

    Args:
      inputs: `3-D` tensor with shape `[time_len, batch_size, input_size]`.
      initial_state: a tuple of tensor(s) of shape
        `[num_layers * num_dirs, batch_size, num_units]`. If not provided, use
        zero initial states. The tuple size is 2 for LSTM and 1 for other RNNs.
      training: whether this operation will be used in training or inference.
    Returns:
      output: a tensor of shape `[time_len, batch_size, num_dirs * num_units]`.
        It is a `concat([fwd_output, bak_output], axis=2)`.
      output_states: a tuple of tensor(s) of the same shape and structure as
        `initial_state`.
    Raises:
      ValueError: initial_state is not a tuple.
    """
    if initial_state is not None and not isinstance(initial_state, tuple):
      raise ValueError("Invalid initial_state type: %s, expecting tuple.",
                       type(initial_state))
    dtype = self.dtype
    inputs = ops.convert_to_tensor(inputs, dtype=dtype)

    batch_size = array_ops.shape(inputs)[1]
    if initial_state is None:
      initial_state = self._zero_state(batch_size)
    if self._rnn_mode == CUDNN_LSTM:
      h, c = initial_state  # pylint:disable=unbalanced-tuple-unpacking,unpacking-non-sequence
    else:
      h, = initial_state  # pylint:disable=unbalanced-tuple-unpacking,unpacking-non-sequence
    h = ops.convert_to_tensor(h, dtype=dtype)
    if self._rnn_mode == CUDNN_LSTM:
      c = ops.convert_to_tensor(c, dtype=dtype)
    else:
      # For model that doesn't take input_c, replace with a dummy tensor.
      c = array_ops.constant([], dtype=dtype)
    outputs, (output_h, output_c) = self._forward(inputs, h, c, self.kernel,
                                                  training)
    if self._rnn_mode == CUDNN_LSTM:
      return outputs, (output_h, output_c)
    else:
      return outputs, (output_h,)

  def state_shape(self, batch_size):
    raise NotImplementedError

  def _zero_state(self, batch_size):
    res = []
    for sp in self.state_shape(batch_size):
      res.append(array_ops.zeros(sp, dtype=self.dtype))
    return tuple(res)

  def _canonical_weight_shape(self, layer):
    """Shapes of Cudnn canonical weight tensors for given layer."""
    if layer < 0 or layer >= self._num_layers:
      raise ValueError("\'layer\' is not valid, got %s, expecting [%d, %d]" %
                       (layer, 0, self._num_layers-1))
    if not self._input_size:
      raise RuntimeError(
          "%s._canonical_weight_shape invoked before input shape is known" %
          type(self).__name__)

    input_size = self._input_size
    num_units = self._num_units
    num_gates = self._num_params_per_layer // 2
    is_bidi = self._direction == CUDNN_RNN_BIDIRECTION

    if layer == 0:
      wts_applied_on_inputs = [(num_units, input_size)] * num_gates
    else:
      if is_bidi:
        wts_applied_on_inputs = [(num_units, 2 * num_units)] * num_gates
      else:
        wts_applied_on_inputs = [(num_units, num_units)] * num_gates
    wts_applied_on_hidden_states = [(num_units, num_units)] * num_gates
    tf_wts = wts_applied_on_inputs + wts_applied_on_hidden_states
    return tf_wts if not is_bidi else tf_wts * 2

  def _canonical_bias_shape(self, unused_layer):
    """Shapes of Cudnn canonical bias tensors for given layer."""
    num_dirs = 1 if self._direction == CUDNN_RNN_UNIDIRECTION else 2
    return [[self._num_units]] * num_dirs * self._num_params_per_layer

  def _canonical_to_opaque(self, cu_weights, cu_biases):
    if not self._input_size:
      raise RuntimeError(
          "%s._canonical_to_opaque invoked before input shape is known" %
          type(self).__name__)
    with ops.device("/gpu:0"):
      return cudnn_rnn_ops.cudnn_rnn_canonical_to_opaque_params(
          rnn_mode=self._rnn_mode,
          num_layers=self._num_layers,
          num_units=self._num_units,
          input_size=self._input_size,
          weights=cu_weights,
          biases=cu_biases,
          input_mode=self._input_mode,
          seed=self._seed,
          dropout=self._dropout,
          direction=self._direction)

  def _forward(self, inputs, h, c, opaque_params, training):
    output, output_h, output_c = cudnn_rnn_ops._cudnn_rnn(  # pylint:disable=protected-access
        inputs,
        h,
        c,
        opaque_params,
        training,
        self._rnn_mode,
        input_mode=self._input_mode,
        direction=self._direction,
        dropout=self._dropout,
        seed=self._seed)
    return output, (output_h, output_c)

  def _create_saveable(self):
    """Create custom saveable for the Cudnn layer.

    Called during layer building process to make sharing checkpoints between
    Cudnn and Cudnn-compatible RNNs easy.
    Returns:
      a `CudnnOpaqueParamsSaveable` object.
    Raises:
      RuntimeError: if any custom saveable is already created for this layer.
    """
    if self._saveable is not None:
      raise RuntimeError("Cudnn saveable already created.")
    self._saveable = self._saveable_cls(  # pylint:disable=not-callable
        opaque_params=self.trainable_variables[0],
        num_layers=self.num_layers,
        num_units=self.num_units,
        input_size=self.input_size,
        input_mode=self.input_mode,
        direction=self.direction,
        scope=vs.get_variable_scope(),
        name="%s_saveable" % self.trainable_variables[0].name.split(":")[0])
    self._saveable._add_checkpointable_dependencies(  # pylint: disable=protected-access
        checkpointable=self, dtype=self._plain_dtype)
    ops.add_to_collection(ops.GraphKeys.SAVEABLE_OBJECTS, self._saveable)


class CudnnLSTM(_CudnnRNN):
  """Cudnn implementation of LSTM layer."""
  _rnn_mode = CUDNN_LSTM
  _num_params_per_layer = CUDNN_LSTM_PARAMS_PER_LAYER
  _saveable_cls = cudnn_rnn_ops.CudnnLSTMSaveable

  def state_shape(self, batch_size):
    """Shape of Cudnn LSTM states.

    Shape is a 2-element tuple. Each is
    [num_layers * num_dirs, batch_size, num_units]
    Args:
      batch_size: an int
    Returns:
      a tuple of python arrays.
    """
    return ([self.num_layers * self.num_dirs, batch_size, self.num_units],
            [self.num_layers * self.num_dirs, batch_size, self.num_units])

  @property
  def _gather_saveables_for_checkpoint(self):
    if self._direction == CUDNN_RNN_UNIDIRECTION:
      # Skip one inheritance level to avoid NotImplementedError.
      return super(_CudnnRNN, self)._gather_saveables_for_checkpoint
    else:
      raise NotImplementedError(
          "Object-based saving does not currently support bidirectional LSTM "
          "cells. File a feature request if this limitation bothers you.")


class _CudnnRNNNoInputC(_CudnnRNN):
  """Abstract simple CudnnRNN layer without input_c."""

  def state_shape(self, batch_size):
    """Shape of the state of Cudnn RNN cells w/o. input_c.

    Shape is a 1-element tuple,
    [num_layers * num_dirs, batch_size, num_units]
    Args:
      batch_size: an int
    Returns:
      a tuple of python arrays.
    """
    return [self.num_layers * self.num_dirs, batch_size, self.num_units],


class CudnnGRU(_CudnnRNNNoInputC):
  """Cudnn implementation of the GRU layer."""
  _rnn_mode = CUDNN_GRU
  _num_params_per_layer = CUDNN_GRU_PARAMS_PER_LAYER
  _saveable_cls = cudnn_rnn_ops.CudnnGRUSaveable


class CudnnRNNTanh(_CudnnRNNNoInputC):
  """Cudnn implementation of the RNN-tanh layer."""
  _rnn_mode = CUDNN_RNN_TANH
  _num_params_per_layer = CUDNN_RNN_TANH_PARAMS_PER_LAYER
  _saveable_cls = cudnn_rnn_ops.CudnnRNNTanhSaveable


class CudnnRNNRelu(_CudnnRNNNoInputC):
  """Cudnn implementation of the RNN-relu layer."""
  _rnn_mode = CUDNN_RNN_RELU
  _num_params_per_layer = CUDNN_RNN_RELU_PARAMS_PER_LAYER
  _saveable_cls = cudnn_rnn_ops.CudnnRNNReluSaveable