aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/util.cc
blob: b58670ecc52f3f5fdd354432cabb3a14e2b1a4f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/util.h"

#include <stdarg.h>
#include <numeric>

#include "tensorflow/compiler/xla/legacy_flags/util_flags.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/strings/numbers.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/stacktrace.h"

namespace xla {
namespace {

// Adds a backtrace to the provided status iff the xla_status_add_backtrace flag
// is set. This is useful for quickly tracing status errors observed coming out
// of the service.
Status MaybeAddBacktrace(const Status& prior) {
  DCHECK(!prior.ok());
  if (legacy_flags::GetUtilFlags()->xla_status_add_backtrace) {
    return Status{prior.code(),
                  tensorflow::strings::StrCat(prior.error_message(), " :: ",
                                              tensorflow::CurrentStackTrace())};
  } else {
    return prior;
  }
}

}  // namespace

ScopedLoggingTimer::ScopedLoggingTimer(const string& label, int32 vlog_level)
    : label(label), vlog_level(vlog_level) {
  if (VLOG_IS_ON(vlog_level)) {
    start_micros = tensorflow::Env::Default()->NowMicros();
  }
}

ScopedLoggingTimer::~ScopedLoggingTimer() {
  if (VLOG_IS_ON(vlog_level)) {
    uint64 end_micros = tensorflow::Env::Default()->NowMicros();
    double secs = (end_micros - start_micros) / 1000000.0;

    LOG(INFO) << label << " time: "
              << tensorflow::strings::HumanReadableElapsedTime(secs);
  }
}

Status AddStatus(Status prior, tensorflow::StringPiece context) {
  CHECK(!prior.ok());
  return Status{prior.code(), tensorflow::strings::StrCat(
                                  context, ": ", prior.error_message())};
}

Status AppendStatus(Status prior, tensorflow::StringPiece context) {
  CHECK(!prior.ok());
  return Status{prior.code(), tensorflow::strings::StrCat(prior.error_message(),
                                                          ": ", context)};
}

// Implementation note: we can't common these out (without using macros) because
// they all need to va_start/va_end their varargs in their frame.

Status InvalidArgument(const char* format, ...) {
  string message;
  va_list args;
  va_start(args, format);
  tensorflow::strings::Appendv(&message, format, args);
  va_end(args);
  return MaybeAddBacktrace(tensorflow::errors::InvalidArgument(message));
}

Status Unimplemented(const char* format, ...) {
  string message;
  va_list args;
  va_start(args, format);
  tensorflow::strings::Appendv(&message, format, args);
  va_end(args);
  return MaybeAddBacktrace(tensorflow::errors::Unimplemented(message));
}

Status InternalError(const char* format, ...) {
  string message;
  va_list args;
  va_start(args, format);
  tensorflow::strings::Appendv(&message, format, args);
  va_end(args);
  return MaybeAddBacktrace(tensorflow::errors::Internal(message));
}

Status FailedPrecondition(const char* format, ...) {
  string message;
  va_list args;
  va_start(args, format);
  tensorflow::strings::Appendv(&message, format, args);
  va_end(args);
  return MaybeAddBacktrace(tensorflow::errors::FailedPrecondition(message));
}

Status ResourceExhausted(const char* format, ...) {
  string message;
  va_list args;
  va_start(args, format);
  tensorflow::strings::Appendv(&message, format, args);
  va_end(args);
  return MaybeAddBacktrace(tensorflow::errors::ResourceExhausted(message));
}

Status NotFound(const char* format, ...) {
  string message;
  va_list args;
  va_start(args, format);
  tensorflow::strings::Appendv(&message, format, args);
  va_end(args);
  return MaybeAddBacktrace(tensorflow::errors::NotFound(message));
}

Status Unavailable(const char* format, ...) {
  string message;
  va_list args;
  va_start(args, format);
  tensorflow::strings::Appendv(&message, format, args);
  va_end(args);
  return MaybeAddBacktrace(tensorflow::errors::Unavailable(message));
}

string Reindent(tensorflow::StringPiece original,
                const tensorflow::StringPiece indentation) {
  std::vector<string> pieces = tensorflow::str_util::Split(
      tensorflow::StringPiece(original.data(), original.size()), '\n');
  return tensorflow::str_util::Join(
      pieces, "\n", [indentation](string* out, string s) {
        tensorflow::StringPiece piece(s);
        tensorflow::str_util::RemoveWhitespaceContext(&piece);
        tensorflow::strings::StrAppend(out, indentation, piece);
      });
}

bool IsPermutation(tensorflow::gtl::ArraySlice<int64> permutation, int64 rank) {
  if (rank != permutation.size()) {
    return false;
  }
  std::vector<int64> output(permutation.size(), -1);
  for (auto index : permutation) {
    CHECK_GE(index, 0);
    CHECK_LT(index, rank);
    output[index] = 0;
  }
  return std::find(output.begin(), output.end(), -1) == output.end();
}

std::vector<int64> InversePermutation(
    tensorflow::gtl::ArraySlice<int64> input_permutation) {
  DCHECK(IsPermutation(input_permutation, input_permutation.size()));
  std::vector<int64> output_permutation(input_permutation.size(), -1);
  for (size_t i = 0; i < input_permutation.size(); ++i) {
    output_permutation[input_permutation[i]] = i;
  }
  return output_permutation;
}

std::vector<int64> ComposePermutations(tensorflow::gtl::ArraySlice<int64> p1,
                                       tensorflow::gtl::ArraySlice<int64> p2) {
  CHECK_EQ(p1.size(), p2.size());
  std::vector<int64> output;
  for (size_t i = 0; i < p1.size(); ++i) {
    output.push_back(p1[p2[i]]);
  }
  return output;
}

bool IsIdentityPermutation(tensorflow::gtl::ArraySlice<int64> p) {
  for (int64 i = 0; i < p.size(); ++i) {
    if (p[i] != i) {
      return false;
    }
  }
  return true;
}

PaddingConfig MakeNoPaddingConfig(int64 rank) {
  PaddingConfig padding_config;
  for (int64 dnum = 0; dnum < rank; ++dnum) {
    auto dimension = padding_config.add_dimensions();
    dimension->set_edge_padding_low(0);
    dimension->set_edge_padding_high(0);
    dimension->set_interior_padding(0);
  }
  return padding_config;
}

bool HasInteriorPadding(const PaddingConfig& config) {
  for (const auto& dim : config.dimensions()) {
    if (dim.interior_padding() != 0) {
      return true;
    }
  }
  return false;
}

string HumanReadableNumFlops(double flops, double nanoseconds) {
  if (nanoseconds == 0) {
    return "NaN FLOP/s";
  }
  double nano_flops = flops / nanoseconds;
  string throughput = tensorflow::strings::HumanReadableNum(
      static_cast<int64>(nano_flops * 1e9));
  tensorflow::StringPiece sp(throughput);
  // Use the more common "G(FLOPS)", rather than "B(FLOPS)"
  if (sp.ends_with("B") ||  // Ends in 'B', ignoring case
      sp.ends_with("b")) {
    *throughput.rbegin() = 'G';
  }
  throughput += "FLOP/s";
  return throughput;
}

void LogLines(int sev, tensorflow::StringPiece text, const char* fname,
              int lineno) {
  const int orig_sev = sev;
  if (sev == tensorflow::FATAL) {
    sev = tensorflow::ERROR;
  }

  size_t cur = 0;
  while (cur < text.size()) {
    size_t eol = text.find('\n', cur);
    if (eol == tensorflow::StringPiece::npos) {
      eol = text.size();
    }
    auto msg = text.substr(cur, eol - cur);
    tensorflow::internal::LogString(fname, lineno, sev,
                                    string(msg.data(), msg.size()));
    cur = eol + 1;
  }

  if (orig_sev == tensorflow::FATAL) {
    tensorflow::internal::LogString(fname, lineno, orig_sev,
                                    "Aborting due to errors.");
  }
}

int64 Product(tensorflow::gtl::ArraySlice<int64> xs) {
  return std::accumulate(xs.begin(), xs.end(), 1, std::multiplies<int64>());
}

std::vector<std::pair<int64, int64>> CommonFactors(
    tensorflow::gtl::ArraySlice<int64> a,
    tensorflow::gtl::ArraySlice<int64> b) {
  CHECK_EQ(Product(a), Product(b));
  if (0 == Product(a)) {
    return {std::make_pair(0, 0), std::make_pair(a.size(), b.size())};
  }

  std::vector<std::pair<int64, int64>> bounds;
  for (int64 i = 0, j = 0, prior_i = -1, prior_j = -1, partial_size_a = 1,
             partial_size_b = 1;
       ;) {
    if (partial_size_a == partial_size_b && (i > prior_i || j > prior_j)) {
      std::tie(prior_i, prior_j) = std::make_pair(i, j);
      bounds.emplace_back(i, j);
      continue;
    }
    bool in_bounds_i = i < a.size();
    bool in_bounds_j = j < b.size();
    if (!(in_bounds_i || in_bounds_j)) {
      break;
    }
    bool next_a =
        partial_size_a < partial_size_b ||
        (in_bounds_i &&
         (!in_bounds_j || (partial_size_a == partial_size_b && a[i] <= b[j])));
    bool next_b =
        partial_size_b < partial_size_a ||
        (in_bounds_j &&
         (!in_bounds_i || (partial_size_b == partial_size_a && b[j] <= a[i])));
    if (next_a) {
      partial_size_a *= a[i];
      ++i;
    }
    if (next_b) {
      partial_size_b *= b[j];
      ++j;
    }
  }
  return bounds;
}

}  // namespace xla