aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/tests/while_test.cc
blob: 7820bc363dd16cffbf38a7e5cd117d7222ff411c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <memory>
#include <string>
#include <vector>

#include "tensorflow/compiler/xla/client/client_library.h"
#include "tensorflow/compiler/xla/client/computation.h"
#include "tensorflow/compiler/xla/client/computation_builder.h"
#include "tensorflow/compiler/xla/client/lib/arithmetic.h"
#include "tensorflow/compiler/xla/client/local_client.h"
#include "tensorflow/compiler/xla/legacy_flags/cpu_compiler_flags.h"
#include "tensorflow/compiler/xla/literal_util.h"
#include "tensorflow/compiler/xla/service/platform_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/compiler/xla/tests/client_library_test_base.h"
#include "tensorflow/compiler/xla/tests/literal_test_util.h"
#include "tensorflow/compiler/xla/tests/test_macros.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/platform/test_benchmark.h"
#include "tensorflow/core/platform/types.h"

namespace se = ::perftools::gputools;

namespace xla {
namespace {

class WhileTest : public ClientLibraryTestBase {};

// Tests a while node when the result type T is S32.
//
// int32 result = 0;
// while (result < 5) {
//   result = result + 1;
// }
TEST_F(WhileTest, WhileWithScalarResult) {
  auto result_shape = ShapeUtil::MakeShape(S32, {});

  // Create a computation for the condition: repeat for 5 iterations.
  Computation condition;
  {
    ComputationBuilder builder(client_, "condition");
    auto prev = builder.Parameter(0, result_shape, "prev");
    builder.Gt(builder.ConstantR0<int32>(5), prev);
    condition = builder.Build().ConsumeValueOrDie();
  }

  // Create a computation for the body: add 1 to the result variable.
  Computation body;
  {
    ComputationBuilder builder(client_, "body");
    auto prev = builder.Parameter(0, result_shape, "prev");
    auto input = builder.ConstantR0<int32>(1);
    auto result = builder.Add(input, prev);
    body = builder.Build().ConsumeValueOrDie();
  }

  // Create a While node with computations for the condition and the body.
  ComputationBuilder builder(client_, TestName());
  auto init = builder.ConstantR0<int32>(0);
  auto result = builder.While(condition, body, init);
  auto shape = builder.GetShape(result).ConsumeValueOrDie();

  ComputeAndCompareR0<int32>(&builder, 5, {});
}

// Tests a while node when the result type T is a vector.
//
// All constants are chosen to produce exact results.
// vector<float> result(0);
// while (result.sum() < 15.5f) {
//   result = result + vector<float>(0);
// }
// TODO(b/29185393): does not terminate on CPU.
TEST_F(WhileTest, DISABLED_WhileWithEmptyVectorResult) {
  Shape result_shape = ShapeUtil::MakeShape(F32, {0});

  // Create a computation for the reduction.
  Computation add;
  {
    ComputationBuilder builder(client_, "add");
    auto x = builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "x");
    auto y = builder.Parameter(1, ShapeUtil::MakeShape(F32, {}), "y");
    builder.Add(x, y);
    add = builder.Build().ConsumeValueOrDie();
  }

  // Create a computation for the condition.
  // Repeat until the sum of the result vector is less than 15.5f.
  Computation condition;
  {
    ComputationBuilder builder(client_, "condition");
    auto prev = builder.Parameter(0, result_shape, "prev");
    auto sum = builder.Reduce(prev, builder.ConstantR0<float>(0.0f), add,
                              /*dimensions_to_reduce=*/{0});
    auto test = builder.Gt(builder.ConstantR0<float>(15.5f), sum);
    condition = builder.Build().ConsumeValueOrDie();
  }

  // Create a computation for the body.
  // Add a constant vector of 1.f to the result vector.
  Computation body;
  {
    ComputationBuilder builder(client_, "body");
    auto prev = builder.Parameter(0, result_shape, "prev");
    auto input = builder.ConstantR1<float>({});
    auto result = builder.Add(input, prev);
    body = builder.Build().ConsumeValueOrDie();
  }

  // Create a While node with computations for the condition and the body.
  ComputationBuilder builder(client_, "while");
  auto init = builder.ConstantR1<float>({});
  auto result = builder.While(condition, body, init);
  VLOG(2) << "while = " << ShapeUtil::HumanString(
                               *builder.GetShape(result).ConsumeValueOrDie());

  ComputeAndCompareR1<float>(&builder, {}, {}, ErrorSpec(0.0001));
}

// Tests a while node when the result type T is a vector.
//
// All constants are chosen to produce exact results.
// vector<float> result(8, 0.0f);
// while (result.sum() < 15.5f) {
//   result = result + vector<float>(8, 0.125f);
// }
TEST_F(WhileTest, WhileWithVectorResult) {
  Shape result_shape = ShapeUtil::MakeShape(F32, {8});

  // Create a computation for the reduction.
  Computation add;
  {
    ComputationBuilder builder(client_, "add");
    auto x = builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "x");
    auto y = builder.Parameter(1, ShapeUtil::MakeShape(F32, {}), "y");
    builder.Add(x, y);
    add = builder.Build().ConsumeValueOrDie();
  }

  // Create a computation for the condition.
  // Repeat until the sum of the result vector is less than 5.5f.
  Computation condition;
  {
    ComputationBuilder builder(client_, "condition");
    auto prev = builder.Parameter(0, result_shape, "prev");
    auto sum = builder.Reduce(prev, builder.ConstantR0<float>(0.0f), add,
                              /*dimensions_to_reduce=*/{0});
    auto test = builder.Gt(builder.ConstantR0<float>(15.5f), sum);
    condition = builder.Build().ConsumeValueOrDie();
  }

  // Create a computation for the body.
  // Add a constant vector of 1.f to the result vector.
  Computation body;
  {
    ComputationBuilder builder(client_, "body");
    auto prev = builder.Parameter(0, result_shape, "prev");
    auto input = builder.ConstantR1<float>(8, 0.125f);
    auto result = builder.Add(input, prev);
    body = builder.Build().ConsumeValueOrDie();
  }

  // Create a While node with computations for the condition and the body.
  ComputationBuilder builder(client_, "while");
  auto init = builder.ConstantR1<float>(8, 0.f);
  auto result = builder.While(condition, body, init);
  VLOG(2) << "while = " << ShapeUtil::HumanString(
                               *builder.GetShape(result).ConsumeValueOrDie());

  // Individual elements with increase by 1/8 each time through the loop, so
  // the sum will increase by 1.0.  It will first be >15.5 when the elements
  // have all reached 2.0.
  std::vector<float> expected = {2.f, 2.f, 2.f, 2.f, 2.f, 2.f, 2.f, 2.f};
  ComputeAndCompareR1<float>(&builder, expected, {}, ErrorSpec(0.0001));
}

// Tests a while node when the result type T is a Tuple.
//
// tuple<int32, vector<float>> result(0, vector<float>(10, 0.0f));
// while (get<0>(result) < 5) {
//   get<0>(result) = get<0>(result) + 1;
//   get<1>(result) = get<1>(result) + vector<float>(10, 1.0f);
// }
TEST_F(WhileTest, WhileWithTupleResult) {
  std::vector<Shape> shape_elements = {ShapeUtil::MakeShape(S32, {}),
                                       ShapeUtil::MakeShape(F32, {10})};
  Shape result_shape = ShapeUtil::MakeTupleShape(shape_elements);

  // Create a computation for the condition.
  // Repeat for 5 iterations.
  Computation condition;
  {
    ComputationBuilder builder(client_, "condition");
    auto prev = builder.Parameter(0, result_shape, "prev");
    auto iteration = builder.GetTupleElement(prev, 0);
    builder.Gt(builder.ConstantR0<int32>(5), iteration);
    condition = builder.Build().ConsumeValueOrDie();
  }

  // Create a computation for the body.
  // Add 1 to the iteration variable and add a constant vector of 1.0f to
  // the weight variable, both of which are tuple elements.
  Computation body;
  {
    ComputationBuilder builder(client_, "body");
    auto prev = builder.Parameter(0, result_shape, "prev");
    auto iteration = builder.GetTupleElement(prev, 0);
    auto weights = builder.GetTupleElement(prev, 1);
    auto input = builder.ConstantR1<float>(10, 1.f);
    auto new_weights = builder.Add(weights, input);
    auto result = builder.Tuple(
        {builder.Add(iteration, builder.ConstantR0<int32>(1)), new_weights});
    body = builder.Build().ConsumeValueOrDie();
  }

  // Create a While node with computations for the condition and the body.
  ComputationBuilder builder(client_, "while");
  auto init = builder.Tuple(
      {builder.ConstantR0<int32>(0), builder.ConstantR1<float>(10, 0.f)});
  auto result = builder.While(condition, body, init);
  VLOG(2) << "while = " << ShapeUtil::HumanString(
                               *builder.GetShape(result).ConsumeValueOrDie());

  auto expected_counter = LiteralUtil::CreateR0<int32>(5);
  auto expected_data = LiteralUtil::CreateR1<float>(
      {5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f});
  auto expected =
      LiteralUtil::MakeTuple({expected_counter.get(), expected_data.get()});
  VLOG(2) << "expected = " << ShapeUtil::HumanString(expected->shape());
  ComputeAndCompareTuple(&builder, *expected, {}, ErrorSpec(0.0001));
}

// Tests a while node when the result type T is a vector of S32.
//
// int32 result = (0, 0, 0, 0, 0, 0);
// while (result[0] < count) {
//   result += (1, U[0, 100], U[0, 100], U[0, 100], U[0, 100], U[0, 100]);
// }
//
// This test misuses a vector to represent a pair:
//   ((iteration, (random vector))).
//
// Note: this test currently only tests generating random values within a loop.
// Per backend the values generated can be different as the different backends
// use different random number generators.
// TODO(b/32240857): Extend test to verify outputs.
TEST_F(WhileTest, WhileWithPrngScalarResult) {
  auto v6s32 = ShapeUtil::MakeShape(S32, {6});

  // Create a computation for the condition: repeat for count iterations.
  auto build_condition = [this, v6s32](int count) {
    ComputationBuilder builder(client_, TestName());
    auto prev = builder.Reshape(
        builder.Slice(builder.Parameter(0, v6s32, "prev"), {0}, {1}), {0}, {});
    builder.Gt(builder.ConstantR0<int32>(count), prev);
    return builder.Build().ConsumeValueOrDie();
  };

  // Create a computation for the body: add 1 to the result variable.
  Computation body;
  {
    ComputationBuilder builder(client_, "body");
    auto prev = builder.Parameter(0, v6s32, "prev");
    auto inc = builder.ConcatInDim(
        {builder.ConstantR1<int32>({1}),
         builder.RngUniform(builder.ConstantR0<int32>(0),
                            builder.ConstantR0<int32>(100),
                            ShapeUtil::MakeShape(S32, {5}))},
        0);
    auto result = builder.Add(inc, prev);
    body = builder.Build().ConsumeValueOrDie();
  }

  // Create a While node with computations for the condition and the body.
  auto while_loop = [this, &body, build_condition](int count) {
    ComputationBuilder builder(client_, TestName());
    auto init = builder.ConstantR1<int32>({0, 0, 0, 0, 0, 0});
    auto result = builder.While(build_condition(count), body, init);
    auto shape = builder.GetShape(result).ConsumeValueOrDie();
    return builder.Build();
  };

  for (int i = 1; i < 4; ++i) {
    TF_ASSIGN_OR_ASSERT_OK(auto computation, while_loop(i));
    TF_ASSIGN_OR_ASSERT_OK(auto result,
                           client_->ExecuteAndTransfer(computation, {}, nullptr,
                                                       nullptr, /*seed=*/65));
  }
}

void BM_WhileLoop(int num_iters) {
  // Benchmark a simple kernel to measure while loop overheads.
  tensorflow::testing::StopTiming();

  se::Platform* platform = PlatformUtil::GetDefaultPlatform().ValueOrDie();
  auto executors = PlatformUtil::GetStreamExecutors(platform).ValueOrDie();
  StreamExecutorMemoryAllocator allocator(platform, executors);
  LocalClient* client =
      ClientLibrary::GetOrCreateLocalClient(platform).ValueOrDie();

  Shape loop_state_shape = ShapeUtil::MakeTupleShape(
      {ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeShape(F32, {10})});

  // Create while condition computation with 'loop_limit'.
  const int32 loop_limit = 100;
  Computation condition;
  {
    ComputationBuilder builder(client, "condition");
    auto prev = builder.Parameter(0, loop_state_shape, "prev");
    auto iteration = builder.GetTupleElement(prev, 0);
    builder.Lt(iteration, builder.ConstantR0<int32>(loop_limit));
    condition = builder.Build().ConsumeValueOrDie();
  }

  // Create while body computation with unit loop increment.
  Computation body;
  {
    ComputationBuilder builder(client, "body");
    auto prev = builder.Parameter(0, loop_state_shape, "prev");
    auto iteration = builder.GetTupleElement(prev, 0);
    auto weights = builder.GetTupleElement(prev, 1);
    auto one = builder.ConstantR0<int32>(1);
    auto next_iteration = builder.Add(iteration, one);
    auto one_vec = builder.ConstantR1<float>(10, 1.f);
    auto new_weights = builder.Add(weights, one_vec);
    auto result = builder.Tuple({next_iteration, new_weights});
    body = builder.Build().ConsumeValueOrDie();
  }

  // Create a While instruction.
  ComputationBuilder builder(client, "while");
  auto init = builder.Tuple(
      {builder.ConstantR0<int32>(0), builder.ConstantR1<float>(10, 0.f)});
  builder.While(condition, body, init);
  auto computation = builder.Build().ConsumeValueOrDie();

  // Run some warm-up executions.
  LocalExecuteOptions options;
  options.set_allocator(&allocator);
  const int kWarmups = 2;
  for (int i = 0; i < kWarmups; ++i) {
    auto result = client->ExecuteLocally(computation, {}, options);
    ASSERT_TRUE(result.ok());
  }

  // Run benchmark.
  tensorflow::testing::StartTiming();
  for (int i = 0; i < num_iters; ++i) {
    auto result = client->ExecuteLocally(computation, {}, options);
    ASSERT_TRUE(result.ok());
  }
}

// TODO(b/32470510): Benchmark fails on parallel CPU backend.
#ifndef XLA_TEST_BACKEND_CPU_PARALLEL
BENCHMARK(BM_WhileLoop);
#endif

}  // namespace
}  // namespace xla

int main(int argc, char** argv) {
  std::vector<tensorflow::Flag> flag_list;
  xla::legacy_flags::AppendCpuCompilerFlags(&flag_list);
  xla::string usage = tensorflow::Flags::Usage(argv[0], flag_list);
  const bool parse_result = tensorflow::Flags::Parse(&argc, argv, flag_list);
  if (!parse_result) {
    LOG(ERROR) << "\n" << usage;
    return 2;
  }
  testing::InitGoogleTest(&argc, argv);
  if (argc > 1) {
    LOG(ERROR) << "Unknown argument " << argv[1] << "\n" << usage;
    return 2;
  }
  tensorflow::testing::RunBenchmarks();
  return RUN_ALL_TESTS();
}