aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/tests/client_library_test_base.h
blob: edc1ba8a5724a1a544d4eb605bc7b3d2bf28fcd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_COMPILER_XLA_TESTS_CLIENT_LIBRARY_TEST_BASE_H_
#define TENSORFLOW_COMPILER_XLA_TESTS_CLIENT_LIBRARY_TEST_BASE_H_

#include <memory>
#include <string>
#include <type_traits>
#include <vector>

#include "tensorflow/compiler/xla/array2d.h"
#include "tensorflow/compiler/xla/array3d.h"
#include "tensorflow/compiler/xla/array4d.h"
#include "tensorflow/compiler/xla/client/client_library.h"
#include "tensorflow/compiler/xla/client/global_data.h"
#include "tensorflow/compiler/xla/client/xla_client/xla_builder.h"
#include "tensorflow/compiler/xla/client/xla_computation.h"
#include "tensorflow/compiler/xla/literal.h"
#include "tensorflow/compiler/xla/literal_util.h"
#include "tensorflow/compiler/xla/ptr_util.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/compiler/xla/tests/literal_test_util.h"
#include "tensorflow/compiler/xla/tests/test_utils.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/lib/core/bitmap.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/platform/stream_executor_no_cuda.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/platform/types.h"

namespace xla {

// Sets the use_bfloat16 on a container of test cases according to the values in
// use_bfloat16_params. Generates one set of test cases for each values in
// use_bfloat16_params with that value. Returns the result.
template <typename TestCase>
std::vector<TestCase> ExpandUseBfloat16(
    tensorflow::gtl::ArraySlice<bool> use_bfloat16_params,
    tensorflow::gtl::ArraySlice<TestCase> specs) {
  std::vector<TestCase> expanded;
  for (bool use_bfloat16 : use_bfloat16_params) {
    for (const auto& spec : specs) {
      expanded.push_back(spec);
      expanded.back().use_bfloat16 = use_bfloat16;
    }
  }
  return expanded;
}

// A client library test establishes an in-process XLA client connection.
class ClientLibraryTestBase : public ::testing::Test {
 protected:
  explicit ClientLibraryTestBase(se::Platform* platform = nullptr);

  // Creates a new ClientLibraryTestBase with custom client options.
  ClientLibraryTestBase(se::Platform* platform,
                        const LocalClientOptions& client_options);

  // Returns the name of the test currently being run.
  string TestName() const;

  void SetFastMathDisabled(bool disabled) {
    execution_options_.mutable_debug_options()->set_xla_enable_fast_math(
        !disabled);
  }

  void SetSeed(uint64 seed) { execution_options_.set_seed(seed); }

  // Provides mutable access to the execution DebugOptions field; this lets
  // tests tweak the options that will be used to compile/run the graph.
  DebugOptions* mutable_debug_options() {
    return execution_options_.mutable_debug_options();
  }

  // TODO(b/25566808): Add helper that populates a literal from a testdata file.

  // Convenience methods for building and running a computation with the member
  // execution options. Modify execution_options_ in your test if you want to
  // customize the options.
  StatusOr<std::unique_ptr<GlobalData>> Execute(
      XlaBuilder* builder, tensorflow::gtl::ArraySlice<GlobalData*> arguments);

  StatusOr<std::unique_ptr<Literal>> ExecuteAndTransfer(
      XlaBuilder* builder, tensorflow::gtl::ArraySlice<GlobalData*> arguments,
      const Shape* shape_with_output_layout = nullptr);

  StatusOr<std::unique_ptr<Literal>> ExecuteAndTransfer(
      const XlaComputation& computation,
      tensorflow::gtl::ArraySlice<GlobalData*> arguments,
      const Shape* shape_with_output_layout = nullptr);

  // This executes the computation via the reference client (which connects a
  // interpreter backend). The result is used as the expected values of the
  // computation.
  StatusOr<std::unique_ptr<Literal>> ExecuteAndTransferReference(
      const XlaComputation& computation,
      tensorflow::gtl::ArraySlice<GlobalData*> arguments,
      const Shape* shape_with_output_layout = nullptr);

  // Run a computation and return its value as a string. If an error
  // occurs, then instead return the error as a string.
  string ExecuteToString(XlaBuilder* builder,
                         tensorflow::gtl::ArraySlice<GlobalData*> arguments);

  // Convenience methods for building and running a computation, transferring
  // the result, and comparing it to the expected value(s). Methods are
  // templated on the native host type which maps to specific XLA types (See
  // XlaBuilder for details). For each rank, two forms are
  // provided: one for floating point types with an ErrorSpec parameter, and one
  // for integral types without the ErrorSpec parameter.
  template <typename NativeT>
  void ComputeAndCompareR0(XlaBuilder* builder, NativeT expected,
                           tensorflow::gtl::ArraySlice<GlobalData*> arguments);
  template <typename NativeT>
  void ComputeAndCompareR0(XlaBuilder* builder, NativeT expected,
                           tensorflow::gtl::ArraySlice<GlobalData*> arguments,
                           ErrorSpec error);

  template <typename NativeT>
  void ComputeAndCompareR1(XlaBuilder* builder,
                           tensorflow::gtl::ArraySlice<NativeT> expected,
                           tensorflow::gtl::ArraySlice<GlobalData*> arguments);
  template <typename NativeT>
  void ComputeAndCompareR1(XlaBuilder* builder,
                           tensorflow::gtl::ArraySlice<NativeT> expected,
                           tensorflow::gtl::ArraySlice<GlobalData*> arguments,
                           ErrorSpec error);

  // As above, but uses a bitmap to hold the predicate vector to avoid
  // deficiencies of vector<bool>.
  void ComputeAndCompareR1(XlaBuilder* builder,
                           const tensorflow::core::Bitmap& expected,
                           tensorflow::gtl::ArraySlice<GlobalData*> arguments);

  template <typename NativeT>
  void ComputeAndCompareR2(XlaBuilder* builder,
                           const Array2D<NativeT>& expected,
                           tensorflow::gtl::ArraySlice<GlobalData*> arguments);
  template <typename NativeT>
  void ComputeAndCompareR2(XlaBuilder* builder,
                           const Array2D<NativeT>& expected,
                           tensorflow::gtl::ArraySlice<GlobalData*> arguments,
                           ErrorSpec error);

  template <typename NativeT>
  void ComputeAndCompareR3(XlaBuilder* builder,
                           const Array3D<NativeT>& expected,
                           tensorflow::gtl::ArraySlice<GlobalData*> arguments);
  template <typename NativeT>
  void ComputeAndCompareR3(XlaBuilder* builder,
                           const Array3D<NativeT>& expected,
                           tensorflow::gtl::ArraySlice<GlobalData*> arguments,
                           ErrorSpec error);

  template <typename NativeT>
  void ComputeAndCompareR4(XlaBuilder* builder,
                           const Array4D<NativeT>& expected,
                           tensorflow::gtl::ArraySlice<GlobalData*> arguments);
  template <typename NativeT>
  void ComputeAndCompareR4(XlaBuilder* builder,
                           const Array4D<NativeT>& expected,
                           tensorflow::gtl::ArraySlice<GlobalData*> arguments,
                           ErrorSpec error);

  // Build and run the computation and compare the result with the given
  // literal. shape_with_layout indicates the result layout to request when
  // calling Execute.
  void ComputeAndCompareLiteral(
      XlaBuilder* builder, const Literal& expected,
      tensorflow::gtl::ArraySlice<GlobalData*> arguments,
      const Shape* shape_with_layout = nullptr);
  void ComputeAndCompareLiteral(
      XlaBuilder* builder, const Literal& expected,
      tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error,
      const Shape* shape_with_layout = nullptr);

  // ComputeAndCompare variant which returns an error status.
  Status ComputeAndCompareLiteralWithStatus(
      XlaBuilder* builder, const Literal& expected,
      tensorflow::gtl::ArraySlice<GlobalData*> arguments,
      const Shape* shape_with_layout = nullptr);
  Status ComputeAndCompareLiteralWithStatus(
      XlaBuilder* builder, const Literal& expected,
      tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error,
      const Shape* shape_with_layout = nullptr);

  // Compare the result of the computation to a strings. In XLA strings are
  // represented using rank-1 U8 shapes.
  void ComputeAndCompareR1U8(
      XlaBuilder* builder, tensorflow::StringPiece expected,
      tensorflow::gtl::ArraySlice<GlobalData*> arguments);

  // Convenience method for running a built computation, transferring the
  // result, and comparing it to the expected tuple literal.
  void ComputeAndCompareTuple(
      XlaBuilder* builder, const Literal& expected,
      tensorflow::gtl::ArraySlice<GlobalData*> arguments);
  void ComputeAndCompareTuple(
      XlaBuilder* builder, const Literal& expected,
      tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error);

  // Convenience method for running a built computation and comparing the result
  // with the reference result.
  void ComputeAndCompare(XlaBuilder* builder,
                         tensorflow::gtl::ArraySlice<Literal> arguments);
  void ComputeAndCompare(XlaBuilder* builder,
                         tensorflow::gtl::ArraySlice<Literal> arguments,
                         ErrorSpec error);

  // Create scalar operations for use in reductions.
  XlaComputation CreateScalarRelu();
  XlaComputation CreateScalarMax();
  XlaComputation CreateScalarReluSensitivity();

  // Special case convenience functions for creating filled arrays.

  // Creates an array of pseudorandom values lying between the given minimum and
  // maximum values.
  template <typename NativeT>
  std::vector<NativeT> CreatePseudorandomR1(const int width, NativeT min_value,
                                            NativeT max_value, uint32 seed);
  template <typename NativeT>
  std::unique_ptr<Array2D<NativeT>> CreatePseudorandomR2(const int rows,
                                                         const int cols,
                                                         NativeT min_value,
                                                         NativeT max_value,
                                                         uint32 seed);

  // Creates a (rows x cols) array filled in the following form:
  //
  //  [      0              1 ...                   cols-1]
  //  [  1,000          1,001 ...          1000.0 + cols-1]
  //  [    ...            ... ...                      ...]
  //  [(rows-1)*1000.0    ... ... (rows-1)*1000.0 + cols-1]
  //
  // If provided, offset is added uniformly to every element (e.g. an offset of
  // 64 would cause 0 in the above to be 64, 1 to be 65, 1000 to be 1064, etc.)
  std::unique_ptr<Array2D<float>> CreatePatternedMatrix(const int rows,
                                                        const int cols,
                                                        float offset = 0.0);

  // Creates a (rows x cols) array as above, padded out to
  // (rows_padded x cols_padded) with zeroes.  Requires rows_padded >= rows
  // and cols_padded > cols.
  std::unique_ptr<Array2D<float>> CreatePatternedMatrixWithZeroPadding(
      const int rows, const int cols, const int rows_padded,
      const int cols_padded);

  // Creates a parameter instruction, transfers the literal for the parameter to
  // server, then stores into "data_handle" the global handle for that
  // parameter. When the use_bfloat16 flag is set but the literal has F32
  // elements, the literal will be converted to BF16 before being transferred.
  std::unique_ptr<GlobalData> CreateParameterAndTransferLiteral(
      int64 parameter_number, const Literal& literal, const string& name,
      XlaBuilder* builder, XlaOp* data_handle);

  // As above, but the caller can specify the device that the literal is
  // transferred to. If device_handle is nullptr, the literal will be
  // transferred to the default device.
  std::unique_ptr<GlobalData> CreateParameterAndTransferLiteral(
      int64 parameter_number, const Literal& literal, const string& name,
      const DeviceHandle* device_handle, XlaBuilder* builder,
      XlaOp* data_handle);

  // Creates a parameter instruction and sets the value that will be passed to
  // the computation as specified. This function must be used for all parameters
  // or none and no parameters must be passed when invoking the computation if
  // using this mechanism. If using this mechanism, then each parameter must be
  // set exactly once. The first added parameter gets index 0, then 1 and so on.
  XlaOp AddParam(const Literal& argument, XlaBuilder* builder);

  template <class T>
  XlaOp AddParam(const Array<T>& argument, XlaBuilder* builder) {
    return AddParam(*LiteralUtil::CreateFromArray(argument), builder);
  }

  // Creates a constant instruction with the given literal. When the
  // use_bfloat16 flag is set but the literal has F32 elements, the elements
  // will be converted to BF16s.
  XlaOp CreateConstantFromLiteral(const Literal& literal, XlaBuilder* builder);

  // Creates a constant instruction with the given array. When the use_bfloat16
  // flag is set but the array has float elements, the elements will be
  // converted to bfloat16s.

  template <typename NativeT>
  XlaOp CreateConstantFromArray(const Array<NativeT>& array,
                                XlaBuilder* builder) {
    return CreateConstantFromLiteral(*LiteralUtil::CreateFromArray(array),
                                     builder);
  }

  // Same as CreateConstantFromArray, but for scalars.
  template <typename NativeT>
  XlaOp CreateConstantFromScalar(NativeT value, XlaBuilder* builder) {
    return CreateConstantFromLiteral(*LiteralUtil::CreateR0<NativeT>(value),
                                     builder);
  }

  // Creates a parameter instruction that wraps a given value and then stores
  // into "data_handle" the global handle for that parameter.
  //
  // "parameter_number" is the parameter number.
  // "name" is the name of the parameter instruction.
  //
  // When the use_bfloat16 flag is set but NativeT is float, the data will be
  // converted to bfloat16.
  template <typename NativeT>
  std::unique_ptr<GlobalData> CreateR0Parameter(NativeT value,
                                                int64 parameter_number,
                                                const string& name,
                                                XlaBuilder* builder,
                                                XlaOp* data_handle);

  // Creates a parameter instruction that wraps the given values and then stores
  // into "data_handle" the global handle for that parameter.
  //
  // "parameter_number" is the parameter number.
  // "name" is the name of the parameter instruction.
  //
  // When the use_bfloat16 flag is set but NativeT is float, the data will be
  // converted to bfloat16.
  template <typename NativeT>
  std::unique_ptr<GlobalData> CreateR1Parameter(
      tensorflow::gtl::ArraySlice<NativeT> values, int64 parameter_number,
      const string& name, XlaBuilder* builder, XlaOp* data_handle);

  // Creates a parameter instruction that wraps the given constant array
  // "array_2d" and then stores to "data_handle" the global handle for that
  // parameter.
  //
  // "parameter_number" is the parameter number.
  // "name" is the name of the parameter instruction.
  //
  // When the use_bfloat16 flag is set but NativeT is float, the data will be
  // converted to bfloat16.
  template <typename NativeT>
  std::unique_ptr<GlobalData> CreateR2Parameter(
      const Array2D<NativeT>& array_2d, int64 parameter_number,
      const string& name, XlaBuilder* builder, XlaOp* data_handle);

  // Creates a parameter instruction that wraps the given constant array
  // "array_3d" and then stores to "data_handle" the global handle for that
  // parameter.
  //
  // "parameter_number" is the parameter number.
  // "name" is the name of the parameter instruction.
  //
  // When the use_bfloat16 flag is set but NativeT is float, the data will be
  // converted to bfloat16.
  template <typename NativeT>
  std::unique_ptr<GlobalData> CreateR3Parameter(
      const Array3D<NativeT>& array_3d, int64 parameter_number,
      const string& name, XlaBuilder* builder, XlaOp* data_handle);

  // Getter and setter for the use_bfloat16 flag, which indicates whether to run
  // tests with all float-type input/output converted to bfloat16.
  bool use_bfloat16() const { return use_bfloat16_; }
  void set_use_bfloat16(bool value) { use_bfloat16_ = value; }

  // The float type used in this test, BF16 or F32 according to use_bfloat16.
  PrimitiveType FloatType() const { return use_bfloat16_ ? BF16 : F32; }

  // Executes the computation and calculates the expected reference value using
  // the reference client. Returns two literals in the order of (expected,
  // actual).
  StatusOr<std::pair<std::unique_ptr<Literal>, std::unique_ptr<Literal>>>
  ComputeValueAndReference(XlaBuilder* builder,
                           tensorflow::gtl::ArraySlice<Literal> arguments);

  Client* client_;
  Client* ref_client_;  // To compute reference result.
  ExecutionOptions execution_options_;

 private:
  Status ComputeAndCompareLiteralWithAllOutputLayouts(
      const xla::XlaComputation& computation, const Literal& expected,
      tensorflow::gtl::ArraySlice<GlobalData*> arguments,
      const std::function<void(const Literal& actual,
                               const string& error_message)>& verify_output);
  Status ComputeAndCompareLiteralWithAllInputLayouts(
      const xla::XlaComputation& computation, const Literal& expected,
      tensorflow::gtl::ArraySlice<GlobalData*> arguments,
      const std::function<void(const Literal& actual,
                               const string& error_message)>& verify_output,
      const Shape* output_with_layout = nullptr);

  // Converts an f32 shape/literal to bf16 if use_bfloat16_ is true.
  Literal MaybeConvertLiteralToBfloat16(const Literal& literal);
  Shape MaybeConvertShapeToBfloat16(const Shape& shape);

  // Whether to run tests with all float-type input/output converted to
  // bfloat16.
  bool use_bfloat16_ = false;

  // Arguments to be passed to the computation when it runs.
  std::vector<Literal> arguments_;
};

template <typename NativeT>
void ClientLibraryTestBase::ComputeAndCompareR0(
    XlaBuilder* builder, NativeT expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  std::unique_ptr<Literal> expected_literal =
      LiteralUtil::CreateR0<NativeT>(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments);
}

template <typename NativeT>
void ClientLibraryTestBase::ComputeAndCompareR0(
    XlaBuilder* builder, NativeT expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error) {
  static_assert(std::is_same<NativeT, float>::value ||
                    std::is_same<NativeT, double>::value ||
                    std::is_same<NativeT, bfloat16>::value ||
                    std::is_same<NativeT, half>::value ||
                    std::is_same<NativeT, complex64>::value,
                "Float or complex type required when specifying an ErrorSpec");
  std::unique_ptr<Literal> expected_literal =
      LiteralUtil::CreateR0<NativeT>(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments, error);
}

template <typename NativeT>
void ClientLibraryTestBase::ComputeAndCompareR1(
    XlaBuilder* builder, tensorflow::gtl::ArraySlice<NativeT> expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  std::unique_ptr<Literal> expected_literal =
      LiteralUtil::CreateR1<NativeT>(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments);
}

template <typename NativeT>
void ClientLibraryTestBase::ComputeAndCompareR1(
    XlaBuilder* builder, tensorflow::gtl::ArraySlice<NativeT> expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error) {
  static_assert(std::is_same<NativeT, float>::value ||
                    std::is_same<NativeT, double>::value ||
                    std::is_same<NativeT, bfloat16>::value ||
                    std::is_same<NativeT, half>::value ||
                    std::is_same<NativeT, complex64>::value,
                "Float or complex type required when specifying an ErrorSpec");
  std::unique_ptr<Literal> expected_literal =
      LiteralUtil::CreateR1<NativeT>(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments, error);
}

template <typename NativeT>
void ClientLibraryTestBase::ComputeAndCompareR2(
    XlaBuilder* builder, const Array2D<NativeT>& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  std::unique_ptr<Literal> expected_literal =
      LiteralUtil::CreateR2FromArray2D<NativeT>(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments);
}

template <typename NativeT>
void ClientLibraryTestBase::ComputeAndCompareR2(
    XlaBuilder* builder, const Array2D<NativeT>& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error) {
  static_assert(std::is_same<NativeT, float>::value ||
                    std::is_same<NativeT, double>::value ||
                    std::is_same<NativeT, bfloat16>::value ||
                    std::is_same<NativeT, half>::value ||
                    std::is_same<NativeT, complex64>::value,
                "Float or complex type required when specifying an ErrorSpec");
  std::unique_ptr<Literal> expected_literal =
      LiteralUtil::CreateR2FromArray2D<NativeT>(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments, error);
}

template <typename NativeT>
void ClientLibraryTestBase::ComputeAndCompareR3(
    XlaBuilder* builder, const Array3D<NativeT>& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  std::unique_ptr<Literal> expected_literal =
      LiteralUtil::CreateR3FromArray3D<NativeT>(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments);
}

template <typename NativeT>
void ClientLibraryTestBase::ComputeAndCompareR3(
    XlaBuilder* builder, const Array3D<NativeT>& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error) {
  static_assert(std::is_same<NativeT, float>::value ||
                    std::is_same<NativeT, double>::value ||
                    std::is_same<NativeT, bfloat16>::value ||
                    std::is_same<NativeT, half>::value ||
                    std::is_same<NativeT, complex64>::value,
                "Float or complex type required when specifying an ErrorSpec");
  std::unique_ptr<Literal> expected_literal =
      LiteralUtil::CreateR3FromArray3D<NativeT>(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments, error);
}

template <typename NativeT>
void ClientLibraryTestBase::ComputeAndCompareR4(
    XlaBuilder* builder, const Array4D<NativeT>& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  std::unique_ptr<Literal> expected_literal =
      LiteralUtil::CreateR4FromArray4D<NativeT>(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments);
}

template <typename NativeT>
void ClientLibraryTestBase::ComputeAndCompareR4(
    XlaBuilder* builder, const Array4D<NativeT>& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error) {
  static_assert(std::is_same<NativeT, float>::value ||
                    std::is_same<NativeT, double>::value ||
                    std::is_same<NativeT, bfloat16>::value ||
                    std::is_same<NativeT, half>::value ||
                    std::is_same<NativeT, complex64>::value,
                "Float or complex type required when specifying an ErrorSpec");
  std::unique_ptr<Literal> expected_literal =
      LiteralUtil::CreateR4FromArray4D<NativeT>(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments, error);
}

template <typename NativeT>
std::unique_ptr<GlobalData> ClientLibraryTestBase::CreateR0Parameter(
    NativeT value, int64 parameter_number, const string& name,
    XlaBuilder* builder, XlaOp* data_handle) {
  std::unique_ptr<Literal> literal = LiteralUtil::CreateR0(value);
  if (use_bfloat16_ && literal->shape().element_type() == F32) {
    literal = LiteralUtil::ConvertF32ToBF16(*literal);
  }
  std::unique_ptr<GlobalData> data =
      client_->TransferToServer(*literal).ConsumeValueOrDie();
  *data_handle = Parameter(builder, parameter_number, literal->shape(), name);
  return data;
}

template <typename NativeT>
std::unique_ptr<GlobalData> ClientLibraryTestBase::CreateR1Parameter(
    tensorflow::gtl::ArraySlice<NativeT> values, int64 parameter_number,
    const string& name, XlaBuilder* builder, XlaOp* data_handle) {
  std::unique_ptr<Literal> literal = LiteralUtil::CreateR1(values);
  if (use_bfloat16_ && literal->shape().element_type() == F32) {
    literal = LiteralUtil::ConvertF32ToBF16(*literal);
  }
  std::unique_ptr<GlobalData> data =
      client_->TransferToServer(*literal).ConsumeValueOrDie();
  *data_handle = Parameter(builder, parameter_number, literal->shape(), name);
  return data;
}

template <typename NativeT>
std::unique_ptr<GlobalData> ClientLibraryTestBase::CreateR2Parameter(
    const Array2D<NativeT>& array_2d, int64 parameter_number,
    const string& name, XlaBuilder* builder, XlaOp* data_handle) {
  std::unique_ptr<Literal> literal = LiteralUtil::CreateR2FromArray2D(array_2d);
  if (use_bfloat16_ && literal->shape().element_type() == F32) {
    literal = LiteralUtil::ConvertF32ToBF16(*literal);
  }
  std::unique_ptr<GlobalData> data =
      client_->TransferToServer(*literal).ConsumeValueOrDie();
  *data_handle = Parameter(builder, parameter_number, literal->shape(), name);
  return data;
}

template <typename NativeT>
std::unique_ptr<GlobalData> ClientLibraryTestBase::CreateR3Parameter(
    const Array3D<NativeT>& array_3d, int64 parameter_number,
    const string& name, XlaBuilder* builder, XlaOp* data_handle) {
  std::unique_ptr<Literal> literal = LiteralUtil::CreateR3FromArray3D(array_3d);
  if (use_bfloat16_ && literal->shape().element_type() == F32) {
    literal = LiteralUtil::ConvertF32ToBF16(*literal);
  }
  std::unique_ptr<GlobalData> data =
      client_->TransferToServer(*literal).ConsumeValueOrDie();
  *data_handle = Parameter(builder, parameter_number, literal->shape(), name);
  return data;
}

template <typename NativeT>
std::vector<NativeT> ClientLibraryTestBase::CreatePseudorandomR1(
    const int width, NativeT min_value, NativeT max_value, uint32 seed) {
  std::vector<NativeT> result(width);
  PseudorandomGenerator<NativeT> generator(min_value, max_value, seed);
  for (int i = 0; i < width; ++i) {
    result[i] = generator.get();
  }
  return result;
}

template <typename NativeT>
std::unique_ptr<Array2D<NativeT>> ClientLibraryTestBase::CreatePseudorandomR2(
    const int rows, const int cols, NativeT min_value, NativeT max_value,
    uint32 seed) {
  auto result = MakeUnique<Array2D<NativeT>>(rows, cols);
  PseudorandomGenerator<NativeT> generator(min_value, max_value, seed);
  for (int y = 0; y < rows; ++y) {
    for (int x = 0; x < cols; ++x) {
      (*result)(y, x) = generator.get();
    }
  }
  return result;
}

}  // namespace xla

#endif  // TENSORFLOW_COMPILER_XLA_TESTS_CLIENT_LIBRARY_TEST_BASE_H_