aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/tests/client_library_test_base.cc
blob: d2a7def5d08fbfb10e06ebc857fbefc161e50bff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/tests/client_library_test_base.h"

#include <string>

#include "tensorflow/compiler/xla/client/client_library.h"
#include "tensorflow/compiler/xla/client/computation.h"
#include "tensorflow/compiler/xla/client/local_client.h"
#include "tensorflow/compiler/xla/legacy_flags/hlo_pass_pipeline_flags.h"
#include "tensorflow/compiler/xla/literal_util.h"
#include "tensorflow/compiler/xla/ptr_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/compiler/xla/test_helpers.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"

namespace se = ::perftools::gputools;

namespace xla {
namespace {
// Wrapper function that creates a nicer error message (than a bare
// ValueOrDie()) if the platform we intend to test is not available.
Client* GetOrCreateLocalClientOrDie(se::Platform* platform) {
  StatusOr<Client*> result = ClientLibrary::GetOrCreateLocalClient(platform);
  TF_CHECK_OK(result.status()) << "could not create local client for testing";
  return result.ValueOrDie();
}
}  // namespace

ClientLibraryTestBase::ClientLibraryTestBase(
    se::Platform* platform,
    tensorflow::gtl::ArraySlice<string> disabled_pass_names)
    : client_(GetOrCreateLocalClientOrDie(platform)) {
  legacy_flags::HloPassPipelineFlags* flags =
      legacy_flags::GetHloPassPipelineFlags();
  flags->xla_disable_hlo_passes =
      tensorflow::str_util::Join(disabled_pass_names, ",");
}

string ClientLibraryTestBase::TestName() const {
  return ::testing::UnitTest::GetInstance()->current_test_info()->name();
}

StatusOr<std::unique_ptr<GlobalData>> ClientLibraryTestBase::Execute(
    ComputationBuilder* builder,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  // Build the computation, as a convenience.
  TF_ASSIGN_OR_RETURN(auto computation, builder->Build());
  return client_->Execute(computation, arguments);
}

StatusOr<std::unique_ptr<Literal>> ClientLibraryTestBase::ExecuteAndTransfer(
    ComputationBuilder* builder,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments,
    const Shape* shape_with_output_layout) {
  // Build the computation, as a convenience.
  TF_ASSIGN_OR_RETURN(auto computation, builder->Build());
  return client_->ExecuteAndTransfer(computation, arguments,
                                     shape_with_output_layout);
}

std::unique_ptr<GlobalData> ClientLibraryTestBase::ExecuteOrDie(
    ComputationBuilder* builder,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  return Execute(builder, arguments).ConsumeValueOrDie();
}

std::unique_ptr<Literal> ClientLibraryTestBase::ExecuteAndTransferOrDie(
    ComputationBuilder* builder,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  return ExecuteAndTransfer(builder, arguments).ConsumeValueOrDie();
}

string ClientLibraryTestBase::ExecuteToString(
    ComputationBuilder* builder,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  StatusOr<Computation> computation_status = builder->Build();
  if (!computation_status.ok()) {
    return computation_status.status().ToString();
  }
  Computation computation = computation_status.ConsumeValueOrDie();

  auto result = client_->ExecuteAndTransfer(computation, arguments);
  if (!result.ok()) {
    return result.status().ToString();
  } else {
    return LiteralUtil::ToString(*result.ValueOrDie());
  }
}

void ClientLibraryTestBase::ComputeAndCompareR1(
    ComputationBuilder* builder, const tensorflow::core::Bitmap& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  std::unique_ptr<Literal> expected_literal = LiteralUtil::CreateR1(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments);
}

void ClientLibraryTestBase::ComputeAndCompareLiteral(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments,
    const Shape* shape_with_layout) {
  EXPECT_IS_OK(ComputeAndCompareLiteralWithStatus(builder, expected, arguments,
                                                  shape_with_layout));
}

void ClientLibraryTestBase::ComputeAndCompareLiteral(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error,
    const Shape* shape_with_layout) {
  EXPECT_IS_OK(ComputeAndCompareLiteralWithStatus(builder, expected, arguments,
                                                  error, shape_with_layout));
}

tensorflow::Status ClientLibraryTestBase::ComputeAndCompareLiteralWithStatus(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments,
    const Shape* shape_with_layout) {
  TF_ASSIGN_OR_RETURN(
      auto actual, ExecuteAndTransfer(builder, arguments, shape_with_layout));
  if (ShapeUtil::ElementIsFloating(expected.shape())) {
    LOG(WARNING) << "performing exact comparison of floating point numbers";
  } else {
    TF_RET_CHECK(ShapeUtil::ElementIsIntegral(expected.shape()) ||
                 expected.shape().element_type() == PRED);
  }
  LiteralTestUtil::ExpectEqual(expected, *actual);
  return tensorflow::Status::OK();
}

tensorflow::Status ClientLibraryTestBase::ComputeAndCompareLiteralWithStatus(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error,
    const Shape* shape_with_layout) {
  TF_ASSIGN_OR_RETURN(
      auto actual, ExecuteAndTransfer(builder, arguments, shape_with_layout));
  TF_RET_CHECK(ShapeUtil::ElementIsFloating(expected.shape()));
  LiteralTestUtil::ExpectNear(expected, *actual, error);
  return tensorflow::Status::OK();
}

void ClientLibraryTestBase::ComputeAndCompareR1U8(
    ComputationBuilder* builder, tensorflow::StringPiece expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  auto actual_status = ExecuteAndTransfer(builder, arguments);
  EXPECT_IS_OK(actual_status.status());
  if (!actual_status.ok()) {
    return;
  }
  auto actual = actual_status.ConsumeValueOrDie();

  // Turn the expected value into a literal.
  std::unique_ptr<Literal> expected_literal = LiteralUtil::CreateR1U8(expected);

  VLOG(1) << "expected: " << LiteralUtil::ToString(*expected_literal);
  VLOG(1) << "actual:   " << LiteralUtil::ToString(*actual);

  EXPECT_EQ(expected, actual->u8s());
}

void ClientLibraryTestBase::ComputeAndCompareTuple(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  auto actual_status = ExecuteAndTransfer(builder, arguments);
  EXPECT_IS_OK(actual_status.status());
  if (!actual_status.ok()) {
    return;
  }
  auto actual = actual_status.ConsumeValueOrDie();
  LiteralTestUtil::ExpectEqualTuple(expected, *actual);
}

void ClientLibraryTestBase::ComputeAndCompareTuple(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error) {
  auto actual_status = ExecuteAndTransfer(builder, arguments);
  EXPECT_IS_OK(actual_status.status());
  if (!actual_status.ok()) {
    return;
  }
  auto actual = actual_status.ConsumeValueOrDie();
  LiteralTestUtil::ExpectNearTuple(expected, *actual, error);
}

Computation ClientLibraryTestBase::CreateScalarRelu() {
  ComputationBuilder builder(client_, "relu");
  auto z_value = builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "z_value");
  auto zero = builder.ConstantR0<float>(0.0);
  builder.Max(z_value, zero);
  auto computation_status = builder.Build();
  TF_CHECK_OK(computation_status.status());
  return computation_status.ConsumeValueOrDie();
}

Computation ClientLibraryTestBase::CreateScalarMax() {
  ComputationBuilder builder(client_, "max");
  auto x = builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "x");
  auto y = builder.Parameter(1, ShapeUtil::MakeShape(F32, {}), "y");
  builder.Max(x, y);
  auto computation_status = builder.Build();
  TF_CHECK_OK(computation_status.status());
  return computation_status.ConsumeValueOrDie();
}

Computation ClientLibraryTestBase::CreateScalarReluSensitivity() {
  ComputationBuilder builder(client_, "relu_sensitivity");
  auto activation =
      builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "activation");
  auto backprop =
      builder.Parameter(1, ShapeUtil::MakeShape(F32, {}), "backprop");
  auto zero = builder.ConstantR0<float>(0.0);
  auto activation_gtz = builder.Gt(activation, zero);
  builder.Select(activation_gtz, /*on_true=*/backprop, /*on_false=*/zero);

  auto computation_status = builder.Build();
  TF_CHECK_OK(computation_status.status());
  return computation_status.ConsumeValueOrDie();
}

std::unique_ptr<Array2D<float>> ClientLibraryTestBase::CreatePatternedMatrix(
    int rows, int cols, float offset) {
  auto array = MakeUnique<Array2D<float>>(rows, cols);
  for (int64 row = 0; row < rows; ++row) {
    for (int64 col = 0; col < cols; ++col) {
      (*array)(row, col) = col + (row * 1000.0f) + offset;
    }
  }
  return array;
}

std::unique_ptr<Array2D<float>>
ClientLibraryTestBase::CreatePatternedMatrixWithZeroPadding(int rows, int cols,
                                                            int rows_padded,
                                                            int cols_padded) {
  CHECK_GE(rows_padded, rows);
  CHECK_GE(cols_padded, cols);
  auto array = MakeUnique<Array2D<float>>(rows_padded, cols_padded, 0.0);
  for (int64 row = 0; row < rows; ++row) {
    for (int64 col = 0; col < cols; ++col) {
      (*array)(row, col) = col + (row * 1000.0f);
    }
  }
  return array;
}

}  // namespace xla