aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/tests/client_library_test_base.cc
blob: ef54714e46ffe6f22f26410c33fa62c2d528f280 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/tests/client_library_test_base.h"

#include <string>

#include "tensorflow/compiler/xla/client/client_library.h"
#include "tensorflow/compiler/xla/client/computation.h"
#include "tensorflow/compiler/xla/client/local_client.h"
#include "tensorflow/compiler/xla/execution_options_util.h"
#include "tensorflow/compiler/xla/literal_util.h"
#include "tensorflow/compiler/xla/ptr_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/compiler/xla/test_helpers.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"

namespace se = ::perftools::gputools;

namespace xla {
namespace {
// Wrapper function that creates a nicer error message (than a bare
// ValueOrDie()) if the platform we intend to test is not available.
Client* GetOrCreateLocalClientOrDie(const LocalClientOptions& client_options) {
  StatusOr<Client*> result =
      ClientLibrary::GetOrCreateLocalClient(client_options);
  TF_CHECK_OK(result.status()) << " could not create local client for testing";
  return result.ValueOrDie();
}
}  // namespace

ClientLibraryTestBase::ClientLibraryTestBase(
    perftools::gputools::Platform* platform,
    const LocalClientOptions& client_options)
    : client_(GetOrCreateLocalClientOrDie(client_options)),
      execution_options_(CreateDefaultExecutionOptions()) {
  CHECK_EQ(platform, client_options.platform());
  // Disabling constant_folding so that tests (usually written using Constants)
  // will exercise the intended code paths, instead of being constant folded.
  //
  // TODO(b/38354253): Constant folding is currently disabled. Change tests to
  // use Parameters instead of Constants, and re-enable constant folding by
  // default.
  execution_options_.mutable_debug_options()->add_xla_disable_hlo_passes(
      "constant_folding");
}

ClientLibraryTestBase::ClientLibraryTestBase(se::Platform* platform)
    : execution_options_(CreateDefaultExecutionOptions()) {
  LocalClientOptions default_options;
  default_options.set_platform(platform);
  client_ = GetOrCreateLocalClientOrDie(default_options);
  execution_options_.mutable_debug_options()->add_xla_disable_hlo_passes(
      "constant_folding");
}

string ClientLibraryTestBase::TestName() const {
  return ::testing::UnitTest::GetInstance()->current_test_info()->name();
}

StatusOr<std::unique_ptr<GlobalData>> ClientLibraryTestBase::Execute(
    ComputationBuilder* builder,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  // Build the computation, as a convenience.
  TF_ASSIGN_OR_RETURN(auto computation, builder->Build());
  return client_->Execute(computation, arguments, &execution_options_);
}

StatusOr<std::unique_ptr<Literal>> ClientLibraryTestBase::ExecuteAndTransfer(
    const Computation& computation,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments,
    const Shape* shape_with_output_layout) {
  ExecutionOptions execution_options = execution_options_;
  if (shape_with_output_layout != nullptr) {
    *execution_options.mutable_shape_with_output_layout() =
        *shape_with_output_layout;
  }
  return client_->ExecuteAndTransfer(computation, arguments,
                                     &execution_options);
}

StatusOr<std::unique_ptr<Literal>> ClientLibraryTestBase::ExecuteAndTransfer(
    ComputationBuilder* builder,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments,
    const Shape* shape_with_output_layout) {
  // Build the computation, as a convenience.
  TF_ASSIGN_OR_RETURN(auto computation, builder->Build());
  return ExecuteAndTransfer(computation, arguments, shape_with_output_layout);
}

std::unique_ptr<GlobalData> ClientLibraryTestBase::ExecuteOrDie(
    ComputationBuilder* builder,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  return Execute(builder, arguments).ConsumeValueOrDie();
}

std::unique_ptr<Literal> ClientLibraryTestBase::ExecuteAndTransferOrDie(
    ComputationBuilder* builder,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  return ExecuteAndTransfer(builder, arguments).ConsumeValueOrDie();
}

string ClientLibraryTestBase::ExecuteToString(
    ComputationBuilder* builder,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  StatusOr<Computation> computation_status = builder->Build();
  if (!computation_status.ok()) {
    return computation_status.status().ToString();
  }
  Computation computation = computation_status.ConsumeValueOrDie();

  auto result =
      client_->ExecuteAndTransfer(computation, arguments, &execution_options_);
  if (!result.ok()) {
    return result.status().ToString();
  } else {
    return result.ValueOrDie()->ToString();
  }
}

void ClientLibraryTestBase::ComputeAndCompareR1(
    ComputationBuilder* builder, const tensorflow::core::Bitmap& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  std::unique_ptr<Literal> expected_literal = Literal::CreateR1(expected);
  ClientLibraryTestBase::ComputeAndCompareLiteral(builder, *expected_literal,
                                                  arguments);
}

void ClientLibraryTestBase::ComputeAndCompareLiteral(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments,
    const Shape* shape_with_layout) {
  EXPECT_IS_OK(ComputeAndCompareLiteralWithStatus(builder, expected, arguments,
                                                  shape_with_layout));
}

void ClientLibraryTestBase::ComputeAndCompareLiteral(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error,
    const Shape* shape_with_layout) {
  EXPECT_IS_OK(ComputeAndCompareLiteralWithStatus(builder, expected, arguments,
                                                  error, shape_with_layout));
}

tensorflow::Status
ClientLibraryTestBase::ComputeAndCompareLiteralWithAllOutputLayouts(
    const xla::Computation& computation, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments,
    const std::function<void(const Literal& actual,
                             const string& error_message)>& verify_output) {
  // Try with no layout requirement.
  TF_ASSIGN_OR_RETURN(auto actual, ExecuteAndTransfer(computation, arguments));
  verify_output(*actual, "");

  // Try with all output layouts.
  std::vector<int64> minor_to_major(ShapeUtil::Rank(expected.shape()));
  std::iota(minor_to_major.begin(), minor_to_major.end(), 0);
  do {
    auto layout = ShapeUtil::MakeShapeWithLayout(
        expected.shape().element_type(),
        AsInt64Slice(expected.shape().dimensions()), minor_to_major);
    TF_ASSIGN_OR_RETURN(auto actual,
                        ExecuteAndTransfer(computation, arguments, &layout));
    verify_output(*actual, tensorflow::strings::StrCat(
                               "Test with output layout: ",
                               ShapeUtil::HumanStringWithLayout(layout)));
  } while (std::next_permutation(minor_to_major.begin(), minor_to_major.end()));
  return tensorflow::Status::OK();
}

tensorflow::Status
ClientLibraryTestBase::ComputeAndCompareLiteralWithAllInputLayouts(
    const xla::Computation& computation, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments,
    const std::function<void(const Literal& actual,
                             const string& error_message)>& verify_output,
    const Shape* output_with_layout) {
  std::vector<GlobalData*> arguments_with_layout;
  std::vector<string> layout_strings;
  // This is a recursive function. It's an std::function instead of a lambda
  // because it needs to capture itself. The index is the index of the argument
  // to try all layouts for.
  std::function<tensorflow::Status(int64)> choose;
  choose = [&, this](int64 index) -> tensorflow::Status {
    if (index < arguments.size()) {
      // Try out all layouts for the operand.
      TF_ASSIGN_OR_RETURN(auto literal,
                          client_->Transfer(*arguments[index], nullptr));
      // Skip tuples because they don't have a rank.
      if (ShapeUtil::IsTuple(literal->shape())) {
        layout_strings.push_back(
            ShapeUtil::HumanStringWithLayout(literal->shape()));
        arguments_with_layout.push_back(arguments[index]);
        TF_RETURN_IF_ERROR(choose(index + 1));
        arguments_with_layout.pop_back();
        layout_strings.pop_back();
        return tensorflow::Status::OK();
      }

      std::vector<int64> minor_to_major(ShapeUtil::Rank(literal->shape()));
      std::iota(minor_to_major.begin(), minor_to_major.end(), 0);
      do {
        auto literal_relayout =
            literal->Relayout(LayoutUtil::MakeLayout(minor_to_major));
        layout_strings.push_back(
            ShapeUtil::HumanStringWithLayout(literal_relayout->shape()));
        TF_ASSIGN_OR_RETURN(auto data,
                            client_->TransferToServer(*literal_relayout));
        arguments_with_layout.push_back(data.get());
        TF_RETURN_IF_ERROR(choose(index + 1));
        arguments_with_layout.pop_back();
        layout_strings.pop_back();
      } while (
          std::next_permutation(minor_to_major.begin(), minor_to_major.end()));
      return tensorflow::Status::OK();
    }

    // Every argument has an assigned layout.
    TF_ASSIGN_OR_RETURN(
        auto actual,
        ExecuteAndTransfer(
            computation,
            tensorflow::gtl::ArraySlice<GlobalData*>(arguments_with_layout),
            output_with_layout));
    string error_message = "Test with input layouts: ";
    for (const auto& str : layout_strings) {
      tensorflow::strings::StrAppend(&error_message, str, " ");
    }
    verify_output(*actual, error_message);
    return tensorflow::Status::OK();
  };

  return choose(0);
}

tensorflow::Status ClientLibraryTestBase::ComputeAndCompareLiteralWithStatus(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments,
    const Shape* shape_with_layout) {
  TF_ASSIGN_OR_RETURN(auto computation, builder->Build());
  if (ShapeUtil::ElementIsFloating(expected.shape()) ||
      ShapeUtil::ElementIsComplex(expected.shape())) {
    LOG(WARNING) << "performing exact comparison of floating point numbers";
  } else {
    TF_RET_CHECK(ShapeUtil::ElementIsIntegral(expected.shape()) ||
                 expected.shape().element_type() == PRED)
        << ShapeUtil::HumanString(expected.shape());
  }
  auto expect_equal = [&](const Literal& actual, const string& error_message) {
    LiteralTestUtil::ExpectEqual(expected, actual, error_message);
  };
  if (execution_options_.debug_options().xla_test_all_output_layouts()) {
    return ComputeAndCompareLiteralWithAllOutputLayouts(
        computation, expected, arguments, expect_equal);
  }
  if (execution_options_.debug_options().xla_test_all_input_layouts()) {
    return ComputeAndCompareLiteralWithAllInputLayouts(
        computation, expected, arguments, expect_equal, shape_with_layout);
  }
  TF_ASSIGN_OR_RETURN(auto actual, ExecuteAndTransfer(computation, arguments,
                                                      shape_with_layout));
  LiteralTestUtil::ExpectEqual(expected, *actual);
  return tensorflow::Status::OK();
}

tensorflow::Status ClientLibraryTestBase::ComputeAndCompareLiteralWithStatus(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error,
    const Shape* shape_with_layout) {
  TF_RET_CHECK(ShapeUtil::ElementIsFloating(expected.shape()) ||
               ShapeUtil::ElementIsComplex(expected.shape()));
  TF_ASSIGN_OR_RETURN(auto computation, builder->Build());
  auto expect_near = [&](const Literal& actual, const string& error_message) {
    LiteralTestUtil::ExpectNear(expected, actual, error, error_message);
  };
  if (execution_options_.debug_options().xla_test_all_output_layouts()) {
    return ComputeAndCompareLiteralWithAllOutputLayouts(computation, expected,
                                                        arguments, expect_near);
  }
  if (execution_options_.debug_options().xla_test_all_input_layouts()) {
    return ComputeAndCompareLiteralWithAllInputLayouts(
        computation, expected, arguments, expect_near, shape_with_layout);
  }
  TF_ASSIGN_OR_RETURN(auto actual, ExecuteAndTransfer(computation, arguments,
                                                      shape_with_layout));
  LiteralTestUtil::ExpectNear(expected, *actual, error);
  return tensorflow::Status::OK();
}

void ClientLibraryTestBase::ComputeAndCompareR1U8(
    ComputationBuilder* builder, tensorflow::StringPiece expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  auto actual_status = ExecuteAndTransfer(builder, arguments);
  EXPECT_IS_OK(actual_status.status());
  if (!actual_status.ok()) {
    return;
  }
  auto actual = actual_status.ConsumeValueOrDie();

  // Turn the expected value into a literal.
  std::unique_ptr<Literal> expected_literal = Literal::CreateR1U8(expected);

  VLOG(1) << "expected: " << expected_literal->ToString();
  VLOG(1) << "actual:   " << actual->ToString();

  EXPECT_EQ(expected, actual->u8s_string());
}

void ClientLibraryTestBase::ComputeAndCompareTuple(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments) {
  auto actual_status = ExecuteAndTransfer(builder, arguments);
  EXPECT_IS_OK(actual_status.status());
  if (!actual_status.ok()) {
    return;
  }
  auto actual = actual_status.ConsumeValueOrDie();
  LiteralTestUtil::ExpectEqualTuple(expected, *actual);
}

void ClientLibraryTestBase::ComputeAndCompareTuple(
    ComputationBuilder* builder, const Literal& expected,
    tensorflow::gtl::ArraySlice<GlobalData*> arguments, ErrorSpec error) {
  auto actual_status = ExecuteAndTransfer(builder, arguments);
  EXPECT_IS_OK(actual_status.status());
  if (!actual_status.ok()) {
    return;
  }
  auto actual = actual_status.ConsumeValueOrDie();
  LiteralTestUtil::ExpectNearTuple(expected, *actual, error);
}

void ClientLibraryTestBase::ComputeAndCompare(
    ComputationBuilder* builder, const ComputationDataHandle& operand,
    tensorflow::gtl::ArraySlice<Literal> arguments) {
  auto status_or_data = ComputeValueAndReference(builder, operand, arguments);
  EXPECT_IS_OK(status_or_data);
  if (!status_or_data.ok()) {
    return;
  }
  std::unique_ptr<Literal> reference, result;
  std::tie(reference, result) = status_or_data.ConsumeValueOrDie();
  LiteralTestUtil::ExpectEqual(*reference, *result);
}

void ClientLibraryTestBase::ComputeAndCompare(
    ComputationBuilder* builder, const ComputationDataHandle& operand,
    tensorflow::gtl::ArraySlice<Literal> arguments, ErrorSpec error) {
  auto status_or_data = ComputeValueAndReference(builder, operand, arguments);
  EXPECT_IS_OK(status_or_data);
  if (!status_or_data.ok()) {
    return;
  }
  std::unique_ptr<Literal> reference, result;
  std::tie(reference, result) = status_or_data.ConsumeValueOrDie();
  LiteralTestUtil::ExpectNear(*reference, *result, error);
}

StatusOr<std::pair<std::unique_ptr<Literal>, std::unique_ptr<Literal>>>
ClientLibraryTestBase::ComputeValueAndReference(
    ComputationBuilder* builder, const ComputationDataHandle& operand,
    tensorflow::gtl::ArraySlice<Literal> arguments) {
  // Transfer the arguments to the executor service. We put the unique_ptr's
  // into a vector to keep the data alive on the service until the end of this
  // function.
  std::vector<std::unique_ptr<GlobalData>> argument_data;
  for (const auto& arg : arguments) {
    TF_ASSIGN_OR_RETURN(auto data, client_->TransferToServer(arg));
    argument_data.push_back(std::move(data));
  }

  // Create raw pointers to the GlobalData for the rest of the call stack.
  std::vector<GlobalData*> argument_data_ptr;
  std::transform(
      argument_data.begin(), argument_data.end(),
      std::back_inserter(argument_data_ptr),
      [](const std::unique_ptr<GlobalData>& data) { return data.get(); });

  TF_ASSIGN_OR_RETURN(
      auto reference,
      builder->ComputeConstant(operand, /*output_layout=*/nullptr, arguments));
  TF_ASSIGN_OR_RETURN(auto result,
                      ExecuteAndTransfer(builder, argument_data_ptr));
  return std::make_pair(std::move(reference), std::move(result));
}

Computation ClientLibraryTestBase::CreateScalarRelu() {
  ComputationBuilder builder(client_, "relu");
  auto z_value = builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "z_value");
  auto zero = builder.ConstantR0<float>(0.0);
  builder.Max(z_value, zero);
  auto computation_status = builder.Build();
  TF_CHECK_OK(computation_status.status());
  return computation_status.ConsumeValueOrDie();
}

Computation ClientLibraryTestBase::CreateScalarMax() {
  ComputationBuilder builder(client_, "max");
  auto x = builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "x");
  auto y = builder.Parameter(1, ShapeUtil::MakeShape(F32, {}), "y");
  builder.Max(x, y);
  auto computation_status = builder.Build();
  TF_CHECK_OK(computation_status.status());
  return computation_status.ConsumeValueOrDie();
}

Computation ClientLibraryTestBase::CreateScalarReluSensitivity() {
  ComputationBuilder builder(client_, "relu_sensitivity");
  auto activation =
      builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "activation");
  auto backprop =
      builder.Parameter(1, ShapeUtil::MakeShape(F32, {}), "backprop");
  auto zero = builder.ConstantR0<float>(0.0);
  auto activation_gtz = builder.Gt(activation, zero);
  builder.Select(activation_gtz, /*on_true=*/backprop, /*on_false=*/zero);

  auto computation_status = builder.Build();
  TF_CHECK_OK(computation_status.status());
  return computation_status.ConsumeValueOrDie();
}

std::unique_ptr<Array2D<float>> ClientLibraryTestBase::CreatePatternedMatrix(
    int rows, int cols, float offset) {
  auto array = MakeUnique<Array2D<float>>(rows, cols);
  for (int64 row = 0; row < rows; ++row) {
    for (int64 col = 0; col < cols; ++col) {
      (*array)(row, col) = col + (row * 1000.0f) + offset;
    }
  }
  return array;
}

std::unique_ptr<Array2D<float>>
ClientLibraryTestBase::CreatePatternedMatrixWithZeroPadding(int rows, int cols,
                                                            int rows_padded,
                                                            int cols_padded) {
  CHECK_GE(rows_padded, rows);
  CHECK_GE(cols_padded, cols);
  auto array = MakeUnique<Array2D<float>>(rows_padded, cols_padded, 0.0);
  for (int64 row = 0; row < rows; ++row) {
    for (int64 col = 0; col < cols; ++col) {
      (*array)(row, col) = col + (row * 1000.0f);
    }
  }
  return array;
}

}  // namespace xla