aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/shape_tree.h
blob: df610102b4c7fa08c0b7030124939009130f89f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_COMPILER_XLA_SHAPE_TREE_H_
#define TENSORFLOW_COMPILER_XLA_SHAPE_TREE_H_

#include <functional>
#include <iterator>
#include <memory>
#include <vector>

#include "absl/memory/memory.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"
#include "tensorflow/compiler/xla/layout_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/gtl/iterator_range.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"

namespace xla {

namespace internal {

// Internal representation of each node in a ShapeTree.
template <typename T>
struct ShapeTreeNode {
  // Data corresponding to this node.
  std::pair<ShapeIndex, T> data;

  bool is_leaf = true;

  explicit ShapeTreeNode(ShapeIndex index)
      : ShapeTreeNode(std::move(index), T()) {}
  ShapeTreeNode(ShapeIndex index, T data)
      : data(std::move(index), std::move(data)) {}
};

// Internal representation of an index table entry.
struct IndexTableEntry {
  // Index of the node in the ShapeTreeNode vector.
  uint32 index;
  // Index of the first child in a IndexTableEntry vector. In the index
  // table all children entries for a given node will be placed next to each
  // other. This allows us to use a single field to index them.
  uint32 children_start;
#ifndef NDEBUG
  // Number of children, used for bounds checking.
  uint32 children_count;
#endif
};

}  // namespace internal

template <typename ContainerType, typename IteratorType, typename ValueType>
class ShapeTreeIterator;

// A ShapeTree<T> is a recursive data structure which mirrors the structure of a
// XLA shape and holds a value of type T for each subshape (i.e. tuple or array)
// in the shape. For array shapes, a ShapeTree trivially holds a single value of
// type T.
//
// For tuple shapes which can be an arbitrary tree with arrays at the leaves, a
// ShapeTree is an identically structured tree with data elements of type T at
// every node. I.e. the root is a tuple by definition, all interior nodes are
// also tuples, and all leaves are arrays.
//
// Like the Shape data structure, this is a tree and tuple elements cannot be
// duplicated. That is, every distinct ShapeIndex in the Shape has a unique T
// object.
//
// Normally a ShapeTree owns its Shape, but for efficiency reasons, sometimes
// it's helpful not to copy a Shape just to make a ShapeTree.  In these cases,
// you can pass a Shape* instead of a Shape& to the ShapeTree constructor.  It's
// then up to you to ensure that the pointed-to Shape doesn't die or mutate
// before its ShapeTree goes away.
template <typename T>
class ShapeTree {
 public:
  using Node = internal::ShapeTreeNode<T>;
  using Index = internal::IndexTableEntry;

  // Default constructor creates a tree with a nil shape (i.e. an empty tuple).
  ShapeTree() : ShapeTree(ShapeUtil::MakeNil()) {}

  // Create ShapeTree with the given shape, and default-constructed T values for
  // all nodes.
  //
  // The version that takes a pointer may be cheaper because it doesn't require
  // any Shape copies, but then it's up to you to ensure that the pointer stays
  // alive longer than this ShapeTree.
  explicit ShapeTree(Shape shape);
  explicit ShapeTree(const Shape* shape);
  explicit ShapeTree(const std::shared_ptr<Shape>& shape);

  // Create ShapeTree with the given shape, and init_value for all nodes.
  ShapeTree(Shape shape, const T& init_value);
  ShapeTree(const Shape* shape, const T& init_value);
  ShapeTree(const std::shared_ptr<Shape>& shape, const T& init_value);

  // Returns the data element associated with the array in the shape at the
  // given index (see ShapeUtil::GetSubshape for how indexes are defined).
  const T& element(ShapeIndexView index) const;
  T* mutable_element(ShapeIndexView index);

  // Return the shape represented with this ShapeTree.
  const Shape& shape() const { return *shape_; }

  // Replaces *only* the underlying shape of this ShapeTree. The caller must own
  // the Shape object and hence shape_storage_ is not updated.
  //
  // Only safe to use this if the ShapeTree was constructed with 'explicit
  // ShapeTree(const Shape* shape)' or is moved from one such ShapeTree. The
  // caller must ensure that the input shape is consistent with the underlying
  // tree.
  void replace_shape_ptr(const Shape* shape) {
    CHECK(shape_storage_.get() == nullptr);
    shape_ = shape;
  }

  // Returns true if the node at the given index is a leaf node (an array
  // shape).
  bool IsLeaf(ShapeIndexView index) const { return Lookup(index)->is_leaf; }

  ShapeTree(const ShapeTree&) = default;
  ShapeTree& operator=(const ShapeTree&) = default;
  ShapeTree(ShapeTree&&) = default;
  ShapeTree& operator=(ShapeTree&& other) = default;

  // iterator implements a bidirectional_iterator with
  //  value_type = std::pair<ShapeIndex, T>.
  //
  // The iteration order is guaranteed to be a pre-order walk of the ShapeTree.
  using iterator =
      ShapeTreeIterator<std::vector<Node>, typename std::vector<Node>::iterator,
                        std::pair<ShapeIndex, T>>;
  using const_iterator =
      ShapeTreeIterator<const std::vector<Node>,
                        typename std::vector<Node>::const_iterator,
                        const std::pair<ShapeIndex, T>>;
  using reverse_iterator = std::reverse_iterator<iterator>;
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;

  // begin/end for iterating over all nodes.
  iterator begin() {
    return iterator(&nodes_, nodes_.begin(),
                    /*iterate_leaves_only=*/false);
  }
  iterator end() {
    return iterator(&nodes_, nodes_.end(),
                    /*iterate_leaves_only=*/false);
  }
  const_iterator begin() const {
    return const_iterator(&nodes_, nodes_.begin(),
                          /*iterate_leaves_only=*/false);
  }
  const_iterator end() const {
    return const_iterator(&nodes_, nodes_.end(),
                          /*iterate_leaves_only=*/false);
  }

  // rbegin/rend for iterating over all nodes in reverse.
  reverse_iterator rbegin() { return reverse_iterator(end()); }
  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

  // leaf_begin()/leaf_end() iterates over all leaf nodes (nodes with no
  // children).
  iterator leaf_begin() {
    return iterator(&nodes_, nodes_.begin(),
                    /*iterate_leaves_only=*/true);
  }
  iterator leaf_end() {
    return iterator(&nodes_, nodes_.end(),
                    /*iterate_leaves_only=*/true);
  }
  const_iterator leaf_begin() const {
    return const_iterator(&nodes_, nodes_.begin(),
                          /*iterate_leaves_only=*/true);
  }
  const_iterator leaf_end() const {
    return const_iterator(&nodes_, nodes_.end(),
                          /*iterate_leaves_only=*/true);
  }
  // range-based iterator for leaf_begin()/leaf_end().
  tensorflow::gtl::iterator_range<iterator> leaves() {
    return tensorflow::gtl::make_range(leaf_begin(), leaf_end());
  }
  tensorflow::gtl::iterator_range<const_iterator> leaves() const {
    return tensorflow::gtl::make_range(leaf_begin(), leaf_end());
  }

  reverse_iterator leaf_rbegin() { return reverse_iterator(leaf_end()); }
  reverse_iterator leaf_rend() { return reverse_iterator(leaf_begin()); }
  const_reverse_iterator leaf_rbegin() const {
    return const_reverse_iterator(leaf_end());
  }
  const_reverse_iterator leaf_rend() const {
    return const_reverse_iterator(leaf_begin());
  }

  // Returns an iterator pointing to the given ShapeIndex.
  // REQUIRES: index must exist in the ShapeTree.
  iterator find(ShapeIndexView index) {
    Node* element = Lookup(index);
    auto element_iter = nodes_.begin() + (element - &nodes_[0]);
    return iterator(&nodes_, element_iter, /*iterate_leaves_only=*/false);
  }
  const_iterator find(ShapeIndexView index) const {
    Node* element = Lookup(index);
    auto element_iter = nodes_.cbegin() + (element - &nodes_[0]);
    return const_iterator(&nodes_, element_iter, /*iterate_leaves_only=*/false);
  }

  // Returns the number of leaf nodes in the tree.
  int64 leaf_count() const { return std::distance(leaf_begin(), leaf_end()); }

  // Recursively traverses the shape and calls the given function at each
  // element. The function has the following arguments:
  //
  //   Fn :    A callable of type void(const ShapeIndex& index, const T& data)
  //           (or compatible).
  //   index : the index of the element in the shape. See ShapeUtil::GetSubshape
  //           for definition of index.
  //   data : The data value at this element.
  template <typename Fn>
  void ForEachElement(const Fn& func) const;

  // Like ForEachElement, but the callable has type
  //
  //   void (const ShapeIndex& index, T* data).
  //
  template <typename Fn>
  void ForEachMutableElement(const Fn& func);

  // Like ForEach(Mutable)Element, but the callable returns a Status instead of
  // void.  The first non-OK return value is returned by the ForEach* function.
  template <typename Fn>
  Status ForEachElementWithStatus(const Fn& func) const;
  template <typename Fn>
  Status ForEachMutableElementWithStatus(const Fn& func);

  // Maps each element to generate a new tree with the same shape.
  template <typename U>
  ShapeTree<U> Map(const std::function<U(const T&)>& func) {
    ShapeTree<U> result(shape_storage_);
    ForEachElement([&](const ShapeIndex& index, const T& t) {
      *result.mutable_element(index) = func(t);
    });
    return result;
  }

  template <typename U>
  ShapeTree<U> Map(const std::function<U(T*)>& func) {
    ShapeTree<U> result(shape_storage_);
    ForEachMutableElement([&](const ShapeIndex& index, T* t) {
      *result.mutable_element(index) = func(t);
    });
    return result;
  }

  // Copy the subtree of values from 'other' rooted at ShapeIndex
  // 'source_base_index' into the subtree of value in this ShapeTree rooted at
  // 'target_base_index'.
  //
  // Precondition: The subshape of other.shape() at index source_base_index must
  // be compatible with the subshape of shape() at index target_base_index.
  void CopySubtreeFrom(const ShapeTree<T>& other,
                       const ShapeIndex& source_base_index,
                       const ShapeIndex& target_base_index);

  bool operator==(const ShapeTree<T>& other) const;
  bool operator!=(const ShapeTree<T>& other) const { return !(*this == other); }

 private:
  // Initialize node->children based on 'shape'. All children are assigned the
  // the given 'init_value'.
  void InitChildren(const Shape& shape, const T& init_value, Node* node,
                    Index* index);

  // Initialize node->children based on 'shape'. All children have
  // default-constructed data values.
  void InitChildren(const Shape& shape, Node* node, Index* index);

  // Returns the number of subshapes, including interior nodes, in shape.
  int64 CountSubshapes(const Shape& shape);

  // Helpers for traversing the shape via ForEachElement. The helpers
  // recursively traverse the subtree rooted at "index" (defined as in
  // ShapeUtil::GetSubshape).
  template <typename Fn>
  static Status ForEachHelper(const Fn& func, const std::vector<Node>& nodes);
  template <typename Fn>
  static Status ForEachMutableHelper(const Fn& func, std::vector<Node>* nodes);

  // Return the tree node at the given index.
  Node* Lookup(ShapeIndexView index);
  const Node* Lookup(ShapeIndexView index) const;

  // The nodes in this shape tree.
  std::vector<Node> nodes_;

  // Index table for node lookups.
  std::vector<Index> index_table_;

  // If we own our Shape, this field contains it, and shape_ is a pointer into
  // here.  Otherwise if we don't own our shape, this is nullptr.
  std::shared_ptr<Shape> shape_storage_;

  // The XLA shape mirrored in this ShapeTree.  This is either
  // shape_storage_.get() or the Shape pointer passed to our constructor.
  const Shape* shape_;
};

// Internal iterator that performs a pre-order walk. This is cheap to copy.
// The iterator value_type is equivalent to a
// std::pair<ShapeIndex,T>&, similar to std::map.
template <typename ContainerType, typename IteratorType, typename ValueType>
class ShapeTreeIterator
    : public std::iterator<std::bidirectional_iterator_tag, ValueType> {
 public:
  ShapeTreeIterator(ContainerType* nodes, IteratorType node,
                    bool iterate_leaves_only)
      : nodes_(nodes),
        node_(std::move(node)),
        iterate_leaves_only_(iterate_leaves_only) {
    while (iterate_leaves_only && node_ != nodes_->end() && !node_->is_leaf) {
      ++node_;
    }
  }

  ShapeTreeIterator& operator++() {
    ++node_;
    while (iterate_leaves_only_ && node_ != nodes_->end() && !node_->is_leaf) {
      ++node_;
    }
    return *this;
  }
  ShapeTreeIterator operator++(int) {
    auto i = *this;
    ++(*this);
    return i;
  }

  ShapeTreeIterator& operator--() {
    --node_;
    while (iterate_leaves_only_ && node_ > nodes_->begin() && !node_->is_leaf) {
      --node_;
    }
    return *this;
  }
  ShapeTreeIterator operator--(int) {
    auto i = *this;
    --(*this);
    return i;
  }

  bool operator==(const ShapeTreeIterator& other) const {
    return node_ == other.node_;
  }
  bool operator!=(const ShapeTreeIterator& other) const {
    return node_ != other.node_;
  }
  ValueType& operator*() { return node_->data; }
  ValueType* operator->() { return &node_->data; }

 private:
  ContainerType* nodes_;
  IteratorType node_;
  // True if we should not include interior nodes in our walk.
  const bool iterate_leaves_only_;
};

template <typename T>
int64 ShapeTree<T>::CountSubshapes(const Shape& shape) {
  int64 current_count = 1;
  if (ShapeUtil::IsTuple(shape)) {
    int64 count = ShapeUtil::TupleElementCount(shape);
    for (int i = 0; i < count; ++i) {
      current_count += CountSubshapes(shape.tuple_shapes(i));
    }
  }
  return current_count;
}

template <typename T>
void ShapeTree<T>::InitChildren(const Shape& shape, const T& init_value,
                                Node* node, Index* index) {
  if (ShapeUtil::IsTuple(shape)) {
    const int64 size = ShapeUtil::TupleElementCount(shape);
#ifndef NDEBUG
    index->children_count = size;
#endif
    node->is_leaf = false;
    ShapeIndex shape_index = node->data.first;
    shape_index.push_back(0);

    // At the end of the index_table, reserve a continuous space to hold the
    // children of current node. In order to enforce the invariant that all
    // children of a given node are placed together, we need to do the
    // reservation before we recurse into any of its children.
    int64 children_start_position = index_table_.size();
    index_table_.resize(index_table_.size() + size);

    for (int i = 0; i < size; ++i) {
      shape_index[shape_index.size() - 1] = i;
      index_table_[children_start_position + i].index = nodes_.size();
      // The first child of the node in the index table is placed at the end of
      // the table.
      index_table_[children_start_position + i].children_start =
          index_table_.size();
      nodes_.emplace_back(shape_index, init_value);
      InitChildren(shape.tuple_shapes(i), init_value, &nodes_.back(),
                   &index_table_[children_start_position + i]);
    }
  } else {
#ifndef NDEBUG
    index->children_count = 0;
#endif
  }
}

template <typename T>
void ShapeTree<T>::InitChildren(const Shape& shape, Node* node, Index* index) {
  if (ShapeUtil::IsTuple(shape)) {
    const int64 size = ShapeUtil::TupleElementCount(shape);
#ifndef NDEBUG
    index->children_count = size;
#endif
    node->is_leaf = false;
    ShapeIndex shape_index = node->data.first;
    shape_index.push_back(0);

    // At the end of the index_table, reserve a continuous space to hold the
    // children of current node. In order to enforce the invariant that all
    // children of a given node are placed together, we need to do the
    // reservation before we recurse into any of its children.
    int64 children_start_position = index_table_.size();
    index_table_.resize(index_table_.size() + size);

    for (int i = 0; i < size; ++i) {
      shape_index[shape_index.size() - 1] = i;
      index_table_[children_start_position + i].index = nodes_.size();
      // The first child of the node in the index table is placed at the end of
      // the table.
      index_table_[children_start_position + i].children_start =
          index_table_.size();
      nodes_.emplace_back(shape_index);
      InitChildren(shape.tuple_shapes(i), &nodes_.back(),
                   &index_table_[children_start_position + i]);
    }
  } else {
#ifndef NDEBUG
    index->children_count = 0;
#endif
  }
}

template <typename T>
ShapeTree<T>::ShapeTree(Shape shape)
    : shape_storage_(std::make_shared<Shape>(std::move(shape))),
      shape_(shape_storage_.get()) {
  const int64 count = CountSubshapes(*shape_);
  nodes_.reserve(count);
  nodes_.emplace_back(ShapeIndex{});

  index_table_.reserve(count);
  index_table_.emplace_back(Index{0, 1});
  InitChildren(*shape_, &nodes_[0], &index_table_[0]);
}

template <typename T>
ShapeTree<T>::ShapeTree(const Shape* shape) : shape_(shape) {
  const int64 count = CountSubshapes(*shape_);
  nodes_.reserve(count);
  nodes_.emplace_back(ShapeIndex{});

  index_table_.reserve(count);
  index_table_.emplace_back(Index{0, 1});
  InitChildren(*shape_, &nodes_[0], &index_table_[0]);
}

template <typename T>
ShapeTree<T>::ShapeTree(const std::shared_ptr<Shape>& shape)
    : shape_storage_(shape), shape_(shape_storage_.get()) {
  const int64 count = CountSubshapes(*shape_);
  nodes_.reserve(count);
  nodes_.emplace_back(ShapeIndex{});

  index_table_.reserve(count);
  index_table_.emplace_back(Index{0, 1});
  InitChildren(*shape_, &nodes_[0], &index_table_[0]);
}

template <typename T>
ShapeTree<T>::ShapeTree(Shape shape, const T& init_value)
    : shape_storage_(std::make_shared<Shape>(std::move(shape))),
      shape_(shape_storage_.get()) {
  const int64 count = CountSubshapes(*shape_);
  nodes_.reserve(count);
  nodes_.emplace_back(ShapeIndex{}, init_value);

  index_table_.reserve(count);
  index_table_.emplace_back(Index{0, 1});
  InitChildren(*shape_, init_value, &nodes_[0], &index_table_[0]);
}

template <typename T>
ShapeTree<T>::ShapeTree(const Shape* shape, const T& init_value)
    : shape_(shape) {
  const int64 count = CountSubshapes(*shape_);
  nodes_.reserve(count);
  nodes_.emplace_back(ShapeIndex{}, init_value);

  index_table_.reserve(count);
  index_table_.emplace_back(Index{0, 1});
  InitChildren(*shape_, init_value, &nodes_[0], &index_table_[0]);
}

template <typename T>
ShapeTree<T>::ShapeTree(const std::shared_ptr<Shape>& shape,
                        const T& init_value)
    : shape_storage_(shape), shape_(shape_storage_.get()) {
  const int64 count = CountSubshapes(*shape_);
  nodes_.reserve(count);
  nodes_.emplace_back(ShapeIndex{}, init_value);

  index_table_.reserve(count);
  index_table_.emplace_back(Index{0, 1});
  InitChildren(*shape_, init_value, &nodes_[0], &index_table_[0]);
}

template <typename T>
const T& ShapeTree<T>::element(ShapeIndexView index) const {
  return Lookup(index)->data.second;
}

template <typename T>
T* ShapeTree<T>::mutable_element(ShapeIndexView index) {
  return &Lookup(index)->data.second;
}

template <typename T>
internal::ShapeTreeNode<T>* ShapeTree<T>::Lookup(ShapeIndexView index) {
  Index* iter = &index_table_[0];
  for (const int64 i : index) {
    CHECK_GE(i, 0);
#ifndef NDEBUG
    CHECK_LT(i, iter->children_count);
#endif
    iter = &index_table_[iter->children_start + i];
  }

  return &nodes_[iter->index];
}

template <typename T>
const internal::ShapeTreeNode<T>* ShapeTree<T>::Lookup(
    ShapeIndexView index) const {
  return const_cast<ShapeTree*>(this)->Lookup(index);
}

/* static */
template <typename T>
template <typename Fn>
Status ShapeTree<T>::ForEachHelper(const Fn& func,
                                   const std::vector<Node>& nodes) {
  for (const auto& node : nodes) {
    TF_RETURN_IF_ERROR(func(node.data.first, node.data.second));
  }
  return Status::OK();
}

/* static */
template <typename T>
template <typename Fn>
Status ShapeTree<T>::ForEachMutableHelper(const Fn& func,
                                          std::vector<Node>* nodes) {
  for (auto& node : *nodes) {
    TF_RETURN_IF_ERROR(func(node.data.first, &node.data.second));
  }
  return Status::OK();
}

template <typename T>
template <typename Fn>
Status ShapeTree<T>::ForEachElementWithStatus(const Fn& func) const {
  return ForEachHelper(func, nodes_);
}

template <typename T>
template <typename Fn>
Status ShapeTree<T>::ForEachMutableElementWithStatus(const Fn& func) {
  return ForEachMutableHelper(func, &nodes_);
}

template <typename T>
template <typename Fn>
void ShapeTree<T>::ForEachElement(const Fn& func) const {
  return ForEachHelper(
             [&func](const ShapeIndex& index, const T& data) {
               func(index, data);
               return Status::OK();
             },
             nodes_)
      .IgnoreError();
}

template <typename T>
template <typename Fn>
void ShapeTree<T>::ForEachMutableElement(const Fn& func) {
  return ForEachMutableHelper(
             [&func](const ShapeIndex& index, T* data) {
               func(index, data);
               return Status::OK();
             },
             &nodes_)
      .IgnoreError();
}

template <typename T>
void ShapeTree<T>::CopySubtreeFrom(const ShapeTree<T>& other,
                                   const ShapeIndex& source_base_index,
                                   const ShapeIndex& target_base_index) {
  CHECK(ShapeUtil::Compatible(
      ShapeUtil::GetSubshape(shape(), target_base_index),
      ShapeUtil::GetSubshape(other.shape(), source_base_index)));
  ForEachMutableElement([this, &other, &source_base_index, &target_base_index](
                            const ShapeIndex& index, T* data) {
    // Copy the data element only if index is in the
    // subtree rooted at target_base_index.
    for (int i = 0; i < target_base_index.size(); ++i) {
      if (i >= index.size() || index[i] != target_base_index[i]) {
        return;
      }
    }
    // Construct source element index to copy from.
    ShapeIndex source_index = source_base_index;
    for (int i = target_base_index.size(); i < index.size(); ++i) {
      source_index.push_back(index[i]);
    }
    *data = other.element(source_index);
  });
}

template <typename T>
bool ShapeTree<T>::operator==(const ShapeTree<T>& other) const {
  bool equal = true;
  ForEachElement(
      [this, &other, &equal](const ShapeIndex& index, const T& data) {
        if (data != other.element(index)) {
          equal = false;
        }
      });
  return equal;
}

}  // namespace xla

#endif  // TENSORFLOW_COMPILER_XLA_SHAPE_TREE_H_