aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/tuple_points_to_analysis.cc
blob: df537bd7c15a1f15ed77ca9be6ce70fbfd2e63be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/tuple_points_to_analysis.h"

#include <ostream>
#include <utility>
#include <vector>

#include "tensorflow/compiler/xla/map_util.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/logging.h"

namespace xla {

string BufferAlias::ToString() const {
  return tensorflow::strings::StrCat("BufferAlias(", instruction_->name(), "[",
                                     tensorflow::str_util::Join(index_, ","),
                                     "])");
}

std::ostream& operator<<(std::ostream& out, const BufferAlias& buffer_alias) {
  out << buffer_alias.ToString();
  return out;
}

bool PointsToSet::IsAmbiguous() const {
  bool ambiguous = false;
  ForEachElement(
      [&ambiguous](const ShapeIndex& /*index*/, const BufferList& points_to) {
        ambiguous |= points_to.size() > 1;
      });
  return ambiguous;
}

bool PointsToSet::IsDistinct() const {
  bool distinct = true;
  std::set<const LogicalBuffer*> all_points_to;
  ForEachElement([&distinct, &all_points_to](const ShapeIndex& /*index*/,
                                             const BufferList& points_to) {
    for (auto& buffer : points_to) {
      if (all_points_to.count(buffer) != 0) {
        distinct = false;
      }
      all_points_to.insert(buffer);
    }
  });
  return distinct;
}

size_t PointsToSet::size() const {
  // Because pointed-to elements may be duplicated we have to create a flattened
  // set and return the size.
  return CreateFlattenedSet().size();
}

PointsToSet::BufferSet PointsToSet::CreateFlattenedSet() const {
  BufferSet flat_set;
  ForEachElement(
      [&flat_set](const ShapeIndex& /*index*/, const BufferList& buffers) {
        flat_set.insert(buffers.begin(), buffers.end());
      });
  return flat_set;
}

bool PointsToSet::ContainsBuffer(const LogicalBuffer& buffer) const {
  bool found = false;
  ForEachElement([&found, &buffer](const ShapeIndex& /*index*/,
                                   const BufferList& pointed_to_buffers) {
    if (!found &&
        std::find(pointed_to_buffers.begin(), pointed_to_buffers.end(),
                  &buffer) != pointed_to_buffers.end()) {
      found = true;
    }
  });
  return found;
}

bool PointsToSet::ContainsBufferAtIndex(const LogicalBuffer& buffer,
                                        const ShapeIndex& index) const {
  const auto& pointed_to_buffers = element(index);
  return std::find(pointed_to_buffers.begin(), pointed_to_buffers.end(),
                   &buffer) != pointed_to_buffers.end();
}

void PointsToSet::AddPointedToBuffer(const LogicalBuffer& buffer,
                                     const ShapeIndex& index) {
  if (ContainsBufferAtIndex(buffer, index)) {
    return;
  }
  mutable_element(index)->push_back(&buffer);
}

const PointsToSet::SourceSet& PointsToSet::tuple_sources(
    const ShapeIndex& index) const {
  return tree_.element(index).tuple_sources;
}

void PointsToSet::add_tuple_source(const ShapeIndex& index,
                                   HloInstruction* tuple) {
  tree_.mutable_element(index)->tuple_sources.insert(tuple);
}

/* static */ StatusOr<std::unique_ptr<TuplePointsToAnalysis>>
TuplePointsToAnalysis::Run(const HloModule* module) {
  auto logical_buffer_analysis = LogicalBufferAnalysis::Run(module);
  std::unique_ptr<TuplePointsToAnalysis> analysis(new TuplePointsToAnalysis(
      module, logical_buffer_analysis.ConsumeValueOrDie()));
  TF_RETURN_IF_ERROR(analysis->Analyze());
  return std::move(analysis);
}

Status TuplePointsToAnalysis::Analyze() {
  per_instruction_.clear();
  per_instruction_.resize(module_->NumUniqueInstructionIds());

  logical_buffer_aliases_.clear();
  logical_buffer_aliases_.resize(
      logical_buffer_analysis_->num_logical_buffers());

  for (auto* computation : module_->MakeNonfusionComputations()) {
    TF_RETURN_IF_ERROR(computation->Accept(this));
    TF_RETURN_IF_ERROR(
        PopulateDefinedBuffersAndAliases(computation->instructions()));
    // Run points-to analysis on fusion instructions in 'computation'.
    for (auto* instruction : computation->instructions()) {
      if (instruction->opcode() != HloOpcode::kFusion) {
        continue;
      }
      TF_RETURN_IF_ERROR(instruction->fused_expression_root()->Accept(this));
      TF_RETURN_IF_ERROR(
          PopulateDefinedBuffersAndAliases(instruction->fused_instructions()));
    }
  }

  XLA_VLOG_LINES(3, ToString());

  return Status::OK();
}

Status TuplePointsToAnalysis::PopulateDefinedBuffersAndAliases(const decltype(
    std::declval<HloComputation>().instructions())& instructions) {
  for (auto* instruction : instructions) {
    PerInstruction* pi = PerInst(instruction);
    TF_RETURN_IF_ERROR(GatherBuffersDefinedByInstruction(
        instruction, &pi->instruction_defined_buffers));

    const PointsToSet& points_to_set = GetPointsToSet(instruction);
    points_to_set.ForEachElement(
        [this, &instruction](
            const ShapeIndex& index,
            const PointsToSet::BufferList& pointed_to_buffers) {
          for (const LogicalBuffer* buffer : pointed_to_buffers) {
            logical_buffer_aliases_[buffer->id()].emplace_back(instruction,
                                                               index);
          }
        });
  }
  return Status::OK();
}

Status TuplePointsToAnalysis::DefaultAction(HloInstruction* hlo_instruction) {
  // Create trivial points-to set for instruction. Each points-to set at index i
  // contains a single element LogicalBuffer(hlo_instruction, i). This indicates
  // that this instruction is the source of all buffers in its own output.
  PointsToSet& points_to_set = CreateEmptyPointsToSet(hlo_instruction);
  points_to_set.ForEachMutableElement(
      [this, hlo_instruction](const ShapeIndex& index,
                              PointsToSet::BufferList* buffers) {
        buffers->push_back(
            &logical_buffer_analysis_->GetBuffer(hlo_instruction, index));
      });

  if (ShapeUtil::IsTuple(hlo_instruction->shape())) {
    // If the hlo instruction is a tuple-shaped, then trivially the instruction
    // itself is the source of the tuple.
    points_to_set.add_tuple_source({}, hlo_instruction);
  }

  return Status::OK();
}

Status TuplePointsToAnalysis::HandleGetTupleElement(
    HloInstruction* get_tuple_element) {
  // GetTupleElement forwards a pointer to a particular element of the tuple
  // operand.
  int64 element_index = get_tuple_element->tuple_index();

  PointsToSet& points_to_set = CreateEmptyPointsToSet(get_tuple_element);
  const PointsToSet& operand_points_to_set =
      *PerInst(get_tuple_element->operand(0))->points_to_set;

  // Copy the points-to set (and tuple sources) at index {element_index} of the
  // operand to the points-to set for this GetTupleElement instruction.
  points_to_set.ForEachMutableElement(
      [&, this](const ShapeIndex& target_index,
                PointsToSet::BufferList* points_to) {
        // Construct an index into the operand by prepending element_index to
        // the index for the GetTupleElement instruction's points-to set.
        ShapeIndex src_index;
        src_index.push_back(element_index);
        for (auto element : target_index) {
          src_index.push_back(element);
        }

        *points_to = operand_points_to_set.element(src_index);
        for (HloInstruction* tuple :
             operand_points_to_set.tuple_sources(src_index)) {
          points_to_set.add_tuple_source(target_index, tuple);
        }
      });

  return Status::OK();
}

Status TuplePointsToAnalysis::HandleCopy(HloInstruction* copy) {
  // A kCopy instruction performs a shallow copy of the operand. The top-level
  // buffer (index={}) is newly created, but all other buffers (in the case of a
  // tuple shape) come from the operand
  PointsToSet& points_to_set = CreateCopiedPointsToSet(copy, copy->operand(0));
  points_to_set.mutable_element(/*index=*/{})->clear();
  points_to_set.AddPointedToBuffer(
      logical_buffer_analysis_->GetBuffer(copy, /*index=*/{}),
      /*index=*/{});

  return Status::OK();
}

Status TuplePointsToAnalysis::HandleBitcast(HloInstruction* bitcast) {
  // A kBitcast instruction aliases its operand. That is, the buffer of its
  // result *is* the buffer of its operand, so just copy the operands points-to
  // set.
  CreateCopiedPointsToSet(bitcast, bitcast->operand(0));
  return Status::OK();
}

Status TuplePointsToAnalysis::HandleTuple(HloInstruction* tuple) {
  tensorflow::gtl::ArraySlice<HloInstruction*> operands(tuple->operands());
  PointsToSet& points_to_set = CreateEmptyPointsToSet(tuple);
  points_to_set.AddPointedToBuffer(
      logical_buffer_analysis_->GetBuffer(tuple, /*index=*/{}),
      /*index=*/{});

  // A tuple contains references to all input operands and transitively any
  // references in those operands.
  for (int64 i = 0; i < operands.size(); ++i) {
    const PointsToSet& operand_points_to_set =
        *PerInst(operands[i])->points_to_set;

    // Copy the points-to set (and tuple sources) of the operand into the
    // respective subtree of the tuple instructions points-to set.
    operand_points_to_set.ForEachElement(
        [&points_to_set, &operand_points_to_set, i](
            const ShapeIndex& src_index,
            const PointsToSet::BufferList& points_to) {
          ShapeIndex target_index;
          target_index.push_back(i);
          for (auto element : src_index) {
            target_index.push_back(element);
          }

          *points_to_set.mutable_element(target_index) = points_to;

          for (HloInstruction* tuple :
               operand_points_to_set.tuple_sources(src_index)) {
            points_to_set.add_tuple_source(target_index, tuple);
          }
        });
  }

  points_to_set.add_tuple_source({}, tuple);

  return Status::OK();
}

Status TuplePointsToAnalysis::HandleSelect(HloInstruction* select) {
  // Select allocates a new buffer and then shallow copies the on_true or
  // on_false buffer into this new buffer. Which side is chosen cannot be
  // determined statically so conservatively set the points-to set to the union
  // of these on_true and on_false operands.
  //
  // First create a copy of the on_true points-to set (and tuple sources), then
  // add in elements of the on_false points-to set (tuple sources).
  auto on_true = select->operand(1);
  auto on_false = select->operand(2);
  PointsToSet& points_to_set = CreateCopiedPointsToSet(select, on_true);
  const PointsToSet& false_points_to_set = *PerInst(on_false)->points_to_set;
  points_to_set.ForEachMutableElement(
      [&](const ShapeIndex& index, PointsToSet::BufferList* buffers) {
        for (const LogicalBuffer* false_buffer :
             false_points_to_set.element(index)) {
          points_to_set.AddPointedToBuffer(*false_buffer, index);
        }

        for (HloInstruction* tuple : false_points_to_set.tuple_sources(index)) {
          points_to_set.add_tuple_source(index, tuple);
        }
      });

  // Select creates a new (top-level) buffer to store its result, so its
  // respective element in the points-to set should contain only itself.
  points_to_set.mutable_element({})->clear();
  points_to_set.AddPointedToBuffer(
      logical_buffer_analysis_->GetBuffer(select, /*index=*/{}),
      /*index=*/{});
  return Status::OK();
}

const PointsToSet& TuplePointsToAnalysis::GetPointsToSet(
    const HloInstruction* hlo_instruction) const {
  return *PerInst(hlo_instruction)->points_to_set;
}

PointsToSet& TuplePointsToAnalysis::CreateEmptyPointsToSet(
    const HloInstruction* instruction) {
  PerInstruction* pi = PerInst(instruction);
  CHECK(pi->points_to_set == nullptr)
      << "instruction should not have been present in the map.";
  auto set = MakeUnique<PointsToSet>(&instruction->shape());
  pi->points_to_set = std::move(set);
  // Return *set using the iterator returned by emplace.
  return *pi->points_to_set;
}

bool TuplePointsToAnalysis::InstructionDefinesBufferAtIndex(
    const HloInstruction* instruction, const ShapeIndex& index) const {
  const auto& buffers = GetPointsToSet(instruction).element(index);
  return (buffers.size() == 1 && buffers[0]->instruction() == instruction);
}

Status TuplePointsToAnalysis::VerifyBuffer(const LogicalBuffer& buffer) const {
  if (!InstructionDefinesBufferAtIndex(buffer.instruction(), buffer.index())) {
    return FailedPrecondition(
        "LogicalBuffer %s is ill-defined: instruction %s does not define a "
        "buffer at that index",
        buffer.ToString().c_str(), buffer.instruction()->name().c_str());
  }

  if (buffer.id() < 0 ||
      buffer.id() >= logical_buffer_analysis_->num_logical_buffers()) {
    return FailedPrecondition(
        "LogicalBuffer %s is ill-defined: invalid id %lld",
        buffer.ToString().c_str(), buffer.id());
  }
  if (GetBuffer(buffer.id()).instruction() != buffer.instruction() ||
      GetBuffer(buffer.id()).index() != buffer.index()) {
    return FailedPrecondition(
        "LogicalBuffer %s is ill-defined: buffer with same id differs: %s",
        buffer.ToString().c_str(), GetBuffer(buffer.id()).ToString().c_str());
  }

  return Status::OK();
}

const LogicalBuffer& TuplePointsToAnalysis::GetBuffer(
    LogicalBuffer::Id id) const {
  CHECK_GE(id, 0);
  CHECK_LT(id, logical_buffer_analysis_->num_logical_buffers());
  return logical_buffer_analysis_->GetBuffer(id);
}

StatusOr<const LogicalBuffer*> TuplePointsToAnalysis::GetBufferDefinedAt(
    const HloInstruction* instruction, const ShapeIndex& index) const {
  const auto& buffers = GetPointsToSet(instruction).element(index);
  if (buffers.size() != 1 || buffers[0]->instruction() != instruction) {
    return FailedPrecondition(
        "instruction %s does not define buffer at index {%s}",
        instruction->name().c_str(),
        tensorflow::str_util::Join(index, ",").c_str());
  }
  return buffers[0];
}

const TuplePointsToAnalysis::BufferAliasVector&
TuplePointsToAnalysis::GetBufferAliases(const LogicalBuffer& buffer) const {
  return logical_buffer_aliases_.at(buffer.id());
}

const TuplePointsToAnalysis::BufferDefinitionVector&
TuplePointsToAnalysis::GetBuffersDefinedByInstruction(
    const HloInstruction* instruction) const {
  return PerInst(instruction)->instruction_defined_buffers;
}

Status TuplePointsToAnalysis::GatherBuffersDefinedByInstruction(
    const HloInstruction* instruction,
    TuplePointsToAnalysis::BufferDefinitionVector* buffers) {
  GetPointsToSet(instruction)
      .ForEachElement([this, buffers, instruction](
                          const ShapeIndex& index,
                          const PointsToSet::BufferList& source_buffers) {
        // Add buffers which 'instruction' is the source of.
        CHECK(!source_buffers.empty());
        if (source_buffers.size() == 1 &&
            source_buffers[0]->instruction() == instruction) {
          // If this instruction is the source of this buffer the
          // indices must match.
          DCHECK(source_buffers[0]->index() == index);
          buffers->push_back(source_buffers[0]);
        } else {
          // If the points-to set includes more than one buffer then
          // necessarily this instruction did not produce the
          // buffer.
          for (const LogicalBuffer* source_buffer : source_buffers) {
            DCHECK(source_buffer->instruction() != instruction);
          }
        }
      });
  return Status::OK();
}

PointsToSet& TuplePointsToAnalysis::CreateCopiedPointsToSet(
    const HloInstruction* instruction, const HloInstruction* src) {
  // PointsToSet doesn't have a copy constructor so copy over element-by-element
  // from src PointsToSet.
  PointsToSet& dst_points_to_set = CreateEmptyPointsToSet(instruction);
  const PointsToSet& src_points_to_set = GetPointsToSet(src);
  dst_points_to_set.ForEachMutableElement(
      [this, &dst_points_to_set, &src_points_to_set](
          const ShapeIndex& index, PointsToSet::BufferList* buffers) {
        *buffers = src_points_to_set.element(index);
        for (auto& tuple_source : src_points_to_set.tuple_sources(index)) {
          dst_points_to_set.add_tuple_source(index, tuple_source);
        }
      });
  return *PerInst(instruction)->points_to_set;
}

string TuplePointsToAnalysis::ToString() const {
  string output = tensorflow::strings::Printf(
      "TuplePointsToSet for module %s:\n", module_->name().c_str());
  for (const auto* computation : module_->MakeNonfusionComputations()) {
    const char* entry =
        computation == module_->entry_computation() ? "entry " : "";
    tensorflow::strings::StrAppend(&output, entry, "computation ",
                                   computation->name(), ":\n");
    for (const HloInstruction* instruction :
         computation->MakeInstructionPostOrder()) {
      InstructionToString(instruction, &output);
      if (instruction->opcode() == HloOpcode::kFusion) {
        for (auto* fused : instruction->fused_instructions()) {
          InstructionToString(fused, &output);
        }
      }
    }
  }

  tensorflow::strings::StrAppend(&output, "LogicalBuffers:\n");
  for (const auto& b : logical_buffer_analysis_->logical_buffers()) {
    tensorflow::strings::StrAppend(&output, "  buffer ", b->ToString(), ":\n");
    for (const BufferAlias& alias : logical_buffer_aliases_.at(b->id())) {
      tensorflow::strings::StrAppend(&output, "    alias ", alias.ToString(),
                                     "\n");
    }
  }
  return output;
}

void TuplePointsToAnalysis::InstructionToString(
    const HloInstruction* instruction, string* output) const {
  const string prefix = instruction->IsFused() ? "    " : "";
  tensorflow::strings::StrAppend(output, prefix, "  instruction ",
                                 instruction->ToShortString(), ":\n");
  const PointsToSet& points_to_set = GetPointsToSet(instruction);
  points_to_set.ForEachElement([&prefix, &output](
                                   const ShapeIndex& index,
                                   const PointsToSet::BufferList& points_to) {
    tensorflow::strings::StrAppend(
        output, prefix, "    {", tensorflow::str_util::Join(index, ","), "}: ",
        tensorflow::str_util::Join(
            points_to, ", ",
            [](string* out, const LogicalBuffer* source) {
              out->append(source->ToString());
            }),
        "\n");
  });
}

}  // namespace xla