aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/shape_inference.cc
blob: e379911462f1d2caa53f708a6ebf8b7363dc2fc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/shape_inference.h"

#include <stddef.h>
#include <algorithm>
#include <numeric>
#include <set>
#include <string>

#include "absl/algorithm/container.h"
#include "absl/container/flat_hash_set.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "absl/strings/string_view.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/compiler/xla/window_util.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/math/math_util.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/protobuf.h"

namespace xla {
namespace {

using absl::StrFormat;
using absl::StrJoin;

// Returns true if no element is present in slice more than once.
bool AllUnique(absl::Span<const int64> slice) {
  return std::set<int64>(slice.begin(), slice.end()).size() == slice.size();
}

Status ExpectArray(const Shape& shape, absl::string_view op_type) {
  if (!ShapeUtil::IsArray(shape)) {
    return InvalidArgument("Expected array argument for %s, but got %s.",
                           string(op_type), ShapeUtil::HumanString(shape));
  }
  return Status::OK();
}

Status VerifyReducerShape(const ProgramShape& reducer_shape,
                          absl::Span<const Shape* const> init_value_shapes,
                          absl::Span<const PrimitiveType> input_element_types,
                          int64 inputs) {
  if (reducer_shape.parameters_size() != inputs * 2) {
    return InvalidArgument(
        "Reduction function must take %d parameters, but "
        "takes %d parameter(s).",
        inputs * 2, reducer_shape.parameters_size());
  }

  const Shape& accumulator_shape = reducer_shape.result();
  std::vector<const Shape*> accumulator_subshapes;
  if (ShapeUtil::IsArray(accumulator_shape)) {
    if (inputs != 1) {
      return InvalidArgument(
          "Reduction function must produce a tuple with %d elements, but "
          "produces a scalar",
          inputs);
    }
    accumulator_subshapes.push_back(&accumulator_shape);
  } else if (ShapeUtil::IsTuple(accumulator_shape)) {
    if (ShapeUtil::TupleElementCount(accumulator_shape) != inputs) {
      return InvalidArgument(
          "Reduction function must produce a tuple with %d elements, but has "
          "%d elements",
          inputs, ShapeUtil::TupleElementCount(accumulator_shape));
    }
    for (const Shape& element_shape : accumulator_shape.tuple_shapes()) {
      accumulator_subshapes.push_back(&element_shape);
    }
  } else {
    return InvalidArgument(
        "Reduction function must produce a scalar or tuple of scalars, but has "
        "shape: %s",
        ShapeUtil::HumanString(accumulator_shape));
  }

  for (const Shape* element_shape : accumulator_subshapes) {
    if (ShapeUtil::Rank(*element_shape) != 0) {
      return InvalidArgument(
          "Reduction function must return a scalar or tuple of scalars but "
          "returns shape: %s",
          ShapeUtil::HumanString(accumulator_shape));
    }
  }

  for (int64 i = 0; i < inputs; ++i) {
    // Check that the accumulator can be passed in as the first argument.
    // Note: comparing here and below with Compatible since we don't care about
    // layout in scalars - see b/26668201 for a longer-term vision.
    if (!ShapeUtil::Compatible(*accumulator_subshapes[i],
                               reducer_shape.parameters(i))) {
      return InvalidArgument(
          "Reduction function's %d-th parameter shape differs from the "
          "result shape: %s vs %s",
          i, ShapeUtil::HumanString(reducer_shape.parameters(i)),
          ShapeUtil::HumanString(*accumulator_subshapes[i]));
    }
    // Check that init_value's shapes are suitable for reducer_shape.
    if (!ShapeUtil::CompatibleIgnoringFpPrecision(*accumulator_subshapes[i],
                                                  *init_value_shapes[i])) {
      return InvalidArgument(
          "Reduction function's accumulator shape at index %d differs from "
          "the init_value shape: %s vs %s",
          i, ShapeUtil::HumanString(*accumulator_subshapes[i]),
          ShapeUtil::HumanString(*init_value_shapes[i]));
    }
    // Check that the inputs can be passed in as the non-accumulator arguments.
    const Shape input_element_shape =
        ShapeUtil::MakeShape(input_element_types[i], {});
    if (!ShapeUtil::CompatibleIgnoringFpPrecision(
            input_element_shape, reducer_shape.parameters(inputs + i))) {
      return InvalidArgument(
          "Reduction function's %d-th parameter shape differs from the "
          "input type element type: %s vs %s",
          inputs + i,
          ShapeUtil::HumanString(reducer_shape.parameters(inputs + i)),
          ShapeUtil::HumanString(input_element_shape));
    }
    // Check that the accumulator and inputs to the reducer function match.
    // If the accumulator is scalar, it must have the same type as the inputs
    // (up to fp precision). If it is a tuple, then the k-th element of the
    // tuple must have the same type as the K-th input (again, up to fp
    // precision.)
    if (!ShapeUtil::CompatibleIgnoringFpPrecision(
            *accumulator_subshapes[i], reducer_shape.parameters(inputs + i))) {
      return InvalidArgument(
          "Reduction function's %d-th parameter shape must "
          "match the result shape, but got %s vs %s.",
          inputs + i,
          ShapeUtil::HumanString(reducer_shape.parameters(inputs + i)),
          ShapeUtil::HumanString(*accumulator_subshapes[i]));
    }
  }

  return Status::OK();
}

StatusOr<Shape> InferWindowOutputShape(const Shape& base_shape,
                                       const Window& window,
                                       PrimitiveType element_type,
                                       bool allow_negative_padding) {
  if (window.dimensions_size() != ShapeUtil::Rank(base_shape)) {
    return InvalidArgument(
        "Window has dimension %d but base shape has dimension %d.",
        window.dimensions_size(), ShapeUtil::Rank(base_shape));
  }

  std::vector<int64> output_dimensions(window.dimensions_size());
  for (int64 i = 0; i < window.dimensions_size(); ++i) {
    const auto& dim = window.dimensions(i);
    if (dim.size() <= 0) {
      return InvalidArgument("Window %s has a non-positive dimension.",
                             window.DebugString());
    }
    if (dim.stride() <= 0) {
      return InvalidArgument("Window %s has a non-positive stride.",
                             window.DebugString());
    }
    if (!allow_negative_padding && dim.padding_low() < 0) {
      return InvalidArgument("Window %s has a negative low padding.",
                             window.DebugString());
    }
    if (!allow_negative_padding && dim.padding_high() < 0) {
      return InvalidArgument("Window %s has a negative high padding.",
                             window.DebugString());
    }
    if (dim.base_dilation() < 1) {
      return InvalidArgument(
          "Window %s has a non-positive base area dilation factor.",
          window.DebugString());
    }
    if (dim.window_dilation() < 1) {
      return InvalidArgument(
          "Window %s has a non-positive window dilation factor.",
          window.DebugString());
    }

    const int64 dilated_base = window_util::DilatedBound(
        ShapeUtil::GetDimension(base_shape, i), dim.base_dilation());
    const int64 padded_dilated_base =
        dim.padding_low() + dilated_base + dim.padding_high();
    const int64 dilated_window =
        window_util::DilatedBound(dim.size(), dim.window_dilation());

    output_dimensions[i] = window_util::StridedBound(
        padded_dilated_base, dilated_window, dim.stride());
  }

  return ShapeUtil::MakeShape(element_type, output_dimensions);
}

}  // namespace

/* static */ StatusOr<Shape> ShapeInference::InferUnaryOpShape(
    HloOpcode opcode, const HloInstruction* operand) {
  return InferUnaryOpShape(opcode, operand->shape());
}

/* static */ StatusOr<Shape> ShapeInference::InferUnaryOpShape(
    HloOpcode opcode, const Shape& shape) {
  // There is no copy operation at the proto level, so handle copy explicitly.
  // A domain shape is the same as the input one.
  if (opcode == HloOpcode::kCopy || opcode == HloOpcode::kDomain) {
    return shape;
  }

  TF_RETURN_IF_ERROR(ExpectArray(shape, "operand of unary operation"));

  TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(shape));
  switch (opcode) {
    case HloOpcode::kFloor:
    case HloOpcode::kCeil:
    case HloOpcode::kRoundNearestAfz:
      if (!ShapeUtil::ElementIsFloating(shape)) {
        return InvalidArgument(
            "Expected element type in shape to be floating for %s operation; "
            "got %s.",
            HloOpcodeString(opcode), PrimitiveType_Name(shape.element_type()));
      }
      return shape;
    case HloOpcode::kCos:
    case HloOpcode::kSin:
    case HloOpcode::kExp:
    case HloOpcode::kExpm1:
    case HloOpcode::kLog:
    case HloOpcode::kLog1p:
    case HloOpcode::kTanh:
      if (!ShapeUtil::ElementIsFloating(shape) &&
          !ShapeUtil::ElementIsComplex(shape)) {
        return InvalidArgument(
            "Expected element type in shape to be floating or complex for %s "
            "operation; got %s.",
            HloOpcodeString(opcode), PrimitiveType_Name(shape.element_type()));
      }
      return shape;
    case HloOpcode::kReal:
    case HloOpcode::kImag:
      if (ShapeUtil::ElementIsComplex(shape)) {
        return ShapeUtil::ComplexComponentShape(shape);
      } else if (ShapeUtil::ElementIsFloating(shape)) {
        return shape;
      } else {
        return InvalidArgument(
            "Expected element type in shape to be floating or complex for "
            "%s operation; got %s.",
            HloOpcodeString(opcode), PrimitiveType_Name(shape.element_type()));
      }
    case HloOpcode::kAbs:
      if (ShapeUtil::ElementIsComplex(shape)) {
        return ShapeUtil::ChangeElementType(
            shape, primitive_util::ComplexComponentType(shape.element_type()));
      } else if (ShapeUtil::ElementIsSigned(shape)) {
        return shape;
      } else {
        return InvalidArgument(
            "Expected element type in shape to be floating or complex for "
            "%s operation; got %s.",
            HloOpcodeString(opcode), PrimitiveType_Name(shape.element_type()));
      }
    case HloOpcode::kClz:
      if (!ShapeUtil::ElementIsIntegral(shape)) {
        return InvalidArgument(
            "Expected an integral element type in argument to Clz "
            "operation; got %s.",
            PrimitiveType_Name(shape.element_type()));
      }
      return shape;
    case HloOpcode::kNegate:
      if (!ShapeUtil::ElementIsIntegral(shape) &&
          !ShapeUtil::ElementIsFloating(shape) &&
          !ShapeUtil::ElementIsComplex(shape)) {
        return InvalidArgument(
            "Expected element type in shape to be integral, floating or "
            "complex for %s operation; got %s.",
            HloOpcodeString(opcode), PrimitiveType_Name(shape.element_type()));
      }
      return shape;
    case HloOpcode::kSign:
      if (!ShapeUtil::ElementIsSigned(shape) &&
          !ShapeUtil::ElementIsComplex(shape)) {
        return InvalidArgument(
            "Expected element type in shape to be signed or complex for "
            "%s operation; got %s.",
            HloOpcodeString(opcode), PrimitiveType_Name(shape.element_type()));
      }
      return shape;

    case HloOpcode::kNot:
      if (shape.element_type() != PRED &&
          !primitive_util::IsIntegralType(shape.element_type())) {
        return InvalidArgument(
            "Expected pred or an integral element type in argument to Not "
            "operation; got %s.",
            PrimitiveType_Name(shape.element_type()));
      }
      return shape;

    case HloOpcode::kIsFinite:
      if (!ShapeUtil::ElementIsFloating(shape)) {
        return InvalidArgument(
            "Expected element type in shape to be floating "
            "point for IsFinite "
            "operation; got %s.",
            PrimitiveType_Name(shape.element_type()));
      }
      return ShapeUtil::ChangeElementType(shape, PRED);

    default:
      return InvalidArgument(
          "Unknown operation for unary shape inference: \"%s\".",
          HloOpcodeString(opcode));
  }
}

/* static */ StatusOr<Shape> ShapeInference::InferConcatOpShape(
    absl::Span<const Shape* const> arg_shapes, const int64 dimension) {
  if (arg_shapes.empty()) {
    return InvalidArgument("Concatenate expects at least one argument.");
  }
  if (dimension < 0 || dimension >= ShapeUtil::Rank(*arg_shapes[0])) {
    return InvalidArgument("Concatenate dimension out of bounds: %d.",
                           dimension);
  }
  const Shape* arg_shape = nullptr;
  PrimitiveType element_type = PRIMITIVE_TYPE_INVALID;
  for (const Shape* shape : arg_shapes) {
    TF_RETURN_IF_ERROR(ExpectArray(*shape, "operand of concatenation"));
    if (!arg_shape) {
      arg_shape = shape;
      element_type = arg_shape->element_type();
      continue;
    }
    if (ShapeUtil::Rank(*arg_shape) != ShapeUtil::Rank(*shape)) {
      return InvalidArgument(
          "Cannot concatenate arrays with different ranks: %d (%s) vs %d "
          "(%s).",
          ShapeUtil::Rank(*arg_shape), ShapeUtil::HumanString(*arg_shape),
          ShapeUtil::Rank(*shape), ShapeUtil::HumanString(*shape));
    }
    if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(*arg_shape, *shape)) {
      return InvalidArgument(
          "Cannot concatenate arrays with different element types: %s vs %s.",
          PrimitiveType_Name(arg_shape->element_type()),
          PrimitiveType_Name(shape->element_type()));
    }
    for (int64 dimension_number = 0;
         dimension_number < ShapeUtil::Rank(*arg_shape); ++dimension_number) {
      if (arg_shape->dimensions(dimension_number) !=
          shape->dimensions(dimension_number)) {
        if (dimension_number == dimension) {
          continue;  // It's okay to differ in the dimension we're
                     // concatenating.
        }
        return InvalidArgument(
            "Cannot concatenate arrays that differ in dimensions other than "
            "the one being concatenated (the other array dimensions must be "
            "the same): %s vs %s in dimension %d.",
            ShapeUtil::HumanString(*arg_shape), ShapeUtil::HumanString(*shape),
            dimension);
      }
    }
    element_type = ShapeUtil::HigherPrecisionElementType(*shape, *arg_shape);
  }

  std::vector<int64> new_dimensions(arg_shape->dimensions().begin(),
                                    arg_shape->dimensions().end());
  for (size_t i = 1; i < arg_shapes.size(); ++i) {
    new_dimensions[dimension] += arg_shapes[i]->dimensions(dimension);
  }
  return ShapeUtil::MakeShape(element_type, new_dimensions);
}

/* static */ StatusOr<Shape> ShapeInference::InferAfterAllShape(
    absl::Span<const Shape* const> arg_shapes) {
  for (const Shape* arg_shape : arg_shapes) {
    if (arg_shape->element_type() != TOKEN) {
      return InvalidArgument(
          "Operands of token instructions must be TOKEN types.");
    }
  }
  return ShapeUtil::MakeTokenShape();
}

/* static */ StatusOr<Shape> ShapeInference::InferConvertShape(
    const Shape& operand_shape, PrimitiveType new_element_type) {
  auto old_element_type = operand_shape.element_type();
  if (primitive_util::IsComplexType(old_element_type) &&
      !primitive_util::IsComplexType(new_element_type)) {
    return Unimplemented(
        "Conversion from complex to real type %s => %s is not implemented.",
        ShapeUtil::HumanString(operand_shape),
        PrimitiveType_Name(new_element_type));
  }
  if (!ShapeUtil::IsArray(operand_shape) ||
      !primitive_util::IsArrayType(new_element_type)) {
    // Note: we may want to support tuple conversions via this operation in the
    // future, by recursing into the tuple elements to check all sub-conversions
    // are valid. For now we just reject them, though.
    return InvalidArgument(
        "Convert does not allow non-arrays, so cannot convert from %s to %s.",
        ShapeUtil::HumanString(operand_shape),
        PrimitiveType_Name(new_element_type));
  }

  return ShapeUtil::ChangeElementType(operand_shape, new_element_type);
}

/* static */ StatusOr<Shape> ShapeInference::InferBitcastConvertShape(
    const Shape& operand_shape, PrimitiveType new_element_type) {
  auto old_element_type = operand_shape.element_type();
  if (primitive_util::IsComplexType(old_element_type) !=
      primitive_util::IsComplexType(new_element_type)) {
    return InvalidArgument("Conversion from complex to real type %s => %s.",
                           ShapeUtil::HumanString(operand_shape),
                           PrimitiveType_Name(new_element_type));
  }
  if (!ShapeUtil::IsArray(operand_shape) ||
      !primitive_util::IsArrayType(new_element_type)) {
    // Note: we may want to support tuple conversions via this operation in the
    // future, by recursing into the tuple elements to check all sub-conversions
    // are valid. For now we just reject them, though.
    return InvalidArgument(
        "Cannot convert from or to tuple type; requested conversion: %s => %s.",
        ShapeUtil::HumanString(operand_shape),
        PrimitiveType_Name(new_element_type));
  }
  if (primitive_util::BitWidth(old_element_type) !=
      primitive_util::BitWidth(new_element_type)) {
    return InvalidArgument(
        "Cannot bitcast types with different bit-widths: %s => %s.",
        PrimitiveType_Name(old_element_type),
        PrimitiveType_Name(new_element_type));
  }

  return ShapeUtil::ChangeElementType(operand_shape, new_element_type);
}

/* static */ StatusOr<Shape> ShapeInference::InferReducePrecisionShape(
    const Shape& operand_shape, const int exponent_bits,
    const int mantissa_bits) {
  if (!ShapeUtil::ElementIsFloating(operand_shape)) {
    return InvalidArgument(
        "Expected element type in shape to be floating point for "
        "ReducePrecision operation; got %s.",
        PrimitiveType_Name(operand_shape.element_type()));
  }
  if (exponent_bits < 1) {
    // One exponent bit is necessary to distinguish 0 from infinity.  Having
    // no exponent bits doesn't produce a sensible number, so we require at
    // least one.
    return InvalidArgument("Expected exponent_bits >= 1; got %d.",
                           exponent_bits);
  }
  if (mantissa_bits < 0) {
    // A number with no mantissa bits is still meaningful, however.
    return InvalidArgument("Expected non-negative mantissa_bits; got %d.",
                           mantissa_bits);
  }
  return operand_shape;
}

/* static */ StatusOr<Shape> ShapeInference::InferPadShape(
    const Shape& operand_shape, const Shape& padding_value_shape,
    const PaddingConfig& padding_config) {
  if (!ShapeUtil::IsArray(operand_shape)) {
    return InvalidArgument(
        "Pad operation does not support tuple-shape operands.");
  }
  if (!ShapeUtil::IsScalar(padding_value_shape)) {
    return InvalidArgument(
        "Pad operation does not support non-scalar padding values.");
  }
  if (ShapeUtil::Rank(operand_shape) != padding_config.dimensions_size()) {
    return InvalidArgument(
        "The rank of the operand and the padding configuration do not match: "
        "%s vs %s.",
        ShapeUtil::HumanString(operand_shape),
        padding_config.ShortDebugString());
  }
  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(operand_shape,
                                                     padding_value_shape)) {
    return InvalidArgument(
        "The element types of the operands to Pad do not match.");
  }
  if (absl::c_any_of(padding_config.dimensions(),
                     [](const PaddingConfig::PaddingConfigDimension& p) {
                       return p.interior_padding() < 0;
                     })) {
    return InvalidArgument("Interior padding cannot be negative: %s",
                           padding_config.ShortDebugString());
  }

  std::vector<int64> dimensions(ShapeUtil::Rank(operand_shape));
  for (int64 i = 0; i < operand_shape.dimensions_size(); ++i) {
    const auto& p = padding_config.dimensions(i);
    dimensions[i] = operand_shape.dimensions(i) + p.edge_padding_low() +
                    p.edge_padding_high() +
                    std::max<int64>(operand_shape.dimensions(i) - 1, 0LL) *
                        p.interior_padding();
  }
  return ShapeUtil::MakeShape(
      ShapeUtil::HigherPrecisionElementType(operand_shape, padding_value_shape),
      dimensions);
}

// Current DotDimensionNumbers Requirements:
//
// Contracting Dimensions:
// *) Exactly one contracting dimension on both lhs and rhs.
// *) Contracting dimension size must be the same on both lhs and rhs.
// *) Contracting dimension numbers do not need to be the same (i.e. transposes
//    are passed on to emitter implementations).
//
// Batch Dimensions:
// *) Same number of batch dimensions on both lhs and rhs.
// *) Same batch dimension numbers (and sizes) on both lhs and rhs.
// *) Batch dimension numbers must be ordered before contracting and
//    non-contracting/non-batch dimension numbers.
//
// Non-Contracting-Non-Batch Dimensions:
// *) Can be 0 (matrix-vector) or 1 (matrix-matrix).
//

namespace {

Status ValidateDotDimensionNumbers(
    const Shape& lhs, const Shape& rhs,
    const DotDimensionNumbers& dimension_numbers) {
  // Check that dimension numbers are in range.
  auto dims_in_range = [](const int64 rank,
                          absl::Span<const int64> contracting_dims,
                          absl::Span<const int64> batch_dims) -> bool {
    auto in_range = [&rank](int64 i) -> bool { return 0 <= i && i < rank; };
    return std::all_of(contracting_dims.begin(), contracting_dims.end(),
                       in_range) &&
           std::all_of(batch_dims.begin(), batch_dims.end(), in_range);
  };

  absl::Span<const int64> lhs_contracting_dimensions =
      AsInt64Slice(dimension_numbers.lhs_contracting_dimensions());
  absl::Span<const int64> rhs_contracting_dimensions =
      AsInt64Slice(dimension_numbers.rhs_contracting_dimensions());
  absl::Span<const int64> lhs_batch_dimensions =
      AsInt64Slice(dimension_numbers.lhs_batch_dimensions());
  absl::Span<const int64> rhs_batch_dimensions =
      AsInt64Slice(dimension_numbers.rhs_batch_dimensions());

  if (!dims_in_range(ShapeUtil::Rank(lhs), lhs_contracting_dimensions,
                     lhs_batch_dimensions) ||
      !dims_in_range(ShapeUtil::Rank(rhs), rhs_contracting_dimensions,
                     rhs_batch_dimensions)) {
    return InvalidArgument("A dimension number is out of range in Dot: %s.",
                           dimension_numbers.DebugString());
  }

  // Check that dimension numbers are unique.
  auto dims_unique = [](absl::Span<const int64> contracting_dims,
                        absl::Span<const int64> batch_dims) -> bool {
    absl::flat_hash_set<int64> dim_set;
    auto is_unique = [&dim_set](int64 i) -> bool {
      return dim_set.insert(i).second;
    };
    return std::all_of(contracting_dims.begin(), contracting_dims.end(),
                       is_unique) &&
           std::all_of(batch_dims.begin(), batch_dims.end(), is_unique);
  };

  if (!dims_unique(lhs_contracting_dimensions, lhs_batch_dimensions) ||
      !dims_unique(rhs_contracting_dimensions, rhs_batch_dimensions)) {
    return InvalidArgument("A dimension number is not unique in Dot: %s.",
                           dimension_numbers.DebugString());
  }

  // Check that the count of non-contracting-non-batch dimensions is in {0, 1}.
  const int64 lhs_non_contracting_non_batch_dims =
      ShapeUtil::Rank(lhs) -
      dimension_numbers.lhs_contracting_dimensions_size() -
      dimension_numbers.lhs_batch_dimensions_size();
  const int64 rhs_non_contracting_non_batch_dims =
      ShapeUtil::Rank(rhs) -
      dimension_numbers.rhs_contracting_dimensions_size() -
      dimension_numbers.rhs_batch_dimensions_size();
  if (lhs_non_contracting_non_batch_dims < 0 ||
      lhs_non_contracting_non_batch_dims > 1 ||
      rhs_non_contracting_non_batch_dims < 0 ||
      rhs_non_contracting_non_batch_dims > 1) {
    return InvalidArgument(
        "Batch and contracting dimension number mismatch with rank.");
  }

  // Check that batch dimension numbers are ordered before all others, and
  // that they are monotonically increasing.
  std::vector<int64> batch_dim_numbers(lhs_batch_dimensions.size());
  std::iota(batch_dim_numbers.begin(), batch_dim_numbers.end(), 0);
  if (!std::equal(batch_dim_numbers.begin(), batch_dim_numbers.end(),
                  lhs_batch_dimensions.begin()) ||
      !std::equal(batch_dim_numbers.begin(), batch_dim_numbers.end(),
                  rhs_batch_dimensions.begin())) {
    return InvalidArgument(
        "Batch dimension numbers must precede non-batch dimensions and be"
        "monotonically increasing.");
  }

  return Status::OK();
}

}  // namespace

/* static */ StatusOr<Shape> ShapeInference::InferDotOpShape(
    const Shape& lhs, const Shape& rhs,
    const DotDimensionNumbers& dimension_numbers) {
  TF_RETURN_IF_ERROR(ExpectArray(lhs, "lhs of dot"));
  TF_RETURN_IF_ERROR(ExpectArray(rhs, "rhs of dot"));

  auto fail = [lhs, rhs](const string& addendum) -> Status {
    string message =
        StrFormat("Cannot infer shape for dot operation: %s <dot> %s.",
                  ShapeUtil::HumanString(lhs), ShapeUtil::HumanString(rhs));
    if (!addendum.empty()) {
      message += " " + addendum;
    }
    return InvalidArgument("%s", message);
  };

  // Check if both element types are the same.
  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(lhs, rhs)) {
    return fail("Element types do not match.");
  }

  if ((ShapeUtil::Rank(lhs) < 1) || (ShapeUtil::Rank(rhs) < 1)) {
    return fail("Dot only supports rank 1 or above.");
  }

  // Validate basic properties of dot dimension numbers.
  TF_RETURN_IF_ERROR(ValidateDotDimensionNumbers(lhs, rhs, dimension_numbers));

  // Check that there is only one contracting dimension for both lhs and rhs.
  if (dimension_numbers.lhs_contracting_dimensions_size() !=
          dimension_numbers.rhs_contracting_dimensions_size() ||
      dimension_numbers.lhs_contracting_dimensions_size() != 1) {
    return fail("Must specify one contracting dimension for both lhs and rhs.");
  }

  // Check that contracting dimension sizes match.
  const int64 lhs_contracting_dimension =
      dimension_numbers.lhs_contracting_dimensions(0);
  const int64 rhs_contracting_dimension =
      dimension_numbers.rhs_contracting_dimensions(0);
  if (lhs.dimensions(lhs_contracting_dimension) !=
      rhs.dimensions(rhs_contracting_dimension)) {
    return fail("Contracting dimension sizes do not match.");
  }

  // Check that number of batch dimensions match.
  if (dimension_numbers.lhs_batch_dimensions_size() !=
      dimension_numbers.rhs_batch_dimensions_size()) {
    return fail("Must the same number of batch dimensions for lhs and rhs.");
  }

  // Check that batch dimension numbers and sizes match.
  for (int64 i = 0; i < dimension_numbers.lhs_batch_dimensions_size(); ++i) {
    if (dimension_numbers.lhs_batch_dimensions(i) !=
            dimension_numbers.rhs_batch_dimensions(i) ||
        lhs.dimensions(dimension_numbers.lhs_batch_dimensions(i)) !=
            rhs.dimensions(dimension_numbers.rhs_batch_dimensions(i))) {
      return fail("Batch dimension numbers and sizes must match for lhs/rhs.");
    }
  }

  // The ranks of lhs and rhs are decremented by 1 respectively due to the
  // contraction, and added for the rank of the result. When an input tensor is
  // a scalar, its contribution to the rank of the result is 0.
  // Generate the result dimensions in order, rhs dimensions followed by lhs
  // dimensions except the contracted and batch dimensions.
  std::vector<int64> dimensions;
  std::unordered_set<int64> rhs_batch_dims(
      dimension_numbers.rhs_batch_dimensions().begin(),
      dimension_numbers.rhs_batch_dimensions().end());
  for (int64 i = 0; i < ShapeUtil::Rank(lhs); i++) {
    if (i != lhs_contracting_dimension) {
      dimensions.push_back(lhs.dimensions(i));
    }
  }
  for (int64 i = 0; i < ShapeUtil::Rank(rhs); i++) {
    if (i != rhs_contracting_dimension && rhs_batch_dims.count(i) == 0) {
      dimensions.push_back(rhs.dimensions(i));
    }
  }
  Shape result = ShapeUtil::MakeShape(
      ShapeUtil::HigherPrecisionElementType(lhs, rhs), dimensions);

  TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(result));
  VLOG(2) << "inferred dot shape: " << ShapeUtil::HumanString(result);
  return result;
}

/* static */ StatusOr<Shape>
ShapeInference::InferDegenerateDimensionBroadcastShape(HloOpcode operation,
                                                       const Shape& lhs,
                                                       const Shape& rhs) {
  TF_RET_CHECK(ShapeUtil::Rank(lhs) == ShapeUtil::Rank(rhs));

  // The shapes have to be compatible. That is, if some dimension d has a
  // different size in the two shapes, one of them has to be 1 (a "degenerate"
  // dimension). In that case, the output shape has the non-1 dimension size
  // from the lhs/rhs pair in every index.
  std::vector<int64> output_dimensions(ShapeUtil::Rank(lhs));
  for (int64 i = 0; i < ShapeUtil::Rank(lhs); ++i) {
    if (lhs.dimensions(i) == rhs.dimensions(i)) {
      output_dimensions[i] = lhs.dimensions(i);
    } else if (lhs.dimensions(i) == 1) {
      output_dimensions[i] = rhs.dimensions(i);
    } else if (rhs.dimensions(i) == 1) {
      output_dimensions[i] = lhs.dimensions(i);
    } else {
      return InvalidArgument(
          "Binary op %s with incompatible shapes: %s and %s.",
          HloOpcodeString(operation), ShapeUtil::HumanString(lhs),
          ShapeUtil::HumanString(rhs));
    }
  }
  return ShapeUtil::MakeShape(ShapeUtil::HigherPrecisionElementType(lhs, rhs),
                              output_dimensions);
}

/* static */ StatusOr<Shape> ShapeInference::InferInDimBroadcastShape(
    const Shape& smaller_shape, const Shape& larger_shape,
    absl::Span<const int64> broadcast_dimensions) {
  if (broadcast_dimensions.empty() && !ShapeUtil::IsScalar(smaller_shape)) {
    // Reject "magic" inference for binops on different shapes, requiring
    // the user to provide an explicit broadcast dimension in this case.
    // See b/25177275 for more details.
    return InvalidArgument("Automatic shape inference not supported: %s and %s",
                           ShapeUtil::HumanString(smaller_shape),
                           ShapeUtil::HumanString(larger_shape));
  } else if (broadcast_dimensions.size() != ShapeUtil::Rank(smaller_shape)) {
    return InvalidArgument(
        "Size of broadcast_dimensions has to match lower-rank operand's "
        "rank; "
        " lower-rank operand's rank is %d, size of broadcast_dimensions is "
        "%u.",
        ShapeUtil::Rank(smaller_shape), broadcast_dimensions.size());
  }

  // broadcast_dimensions is a sequence of dimensions; its length is equal to
  // the rank of the lower-rank operand. The lower-rank operand's dimensions
  // have to be compatible with the higher-rank operand's dimensions at indices
  // specified by broadcast_dimensions. Here compatible means the dimension
  // sizes are equal or in one of the shapes the dimension size is
  // one. Examples:
  //
  // smaller_shape   larger_shape   broadcast_dimensions   output_shape
  //   []              [2, 3]          {}                    [2, 3]
  //   [3]             [4, 3]          {1}                   [4, 3]
  //   [2, 3]          [2, 3, 4]       {0, 1}                [2, 3, 4]
  //   [2, 1]          [2, 3, 4]       {0, 2}                [2, 3, 1]
  //   [2, 3]          [2, 1, 4]       {0, 1}                [2, 3, 4]
  //
  // The column output_shape may not be the final shape of the XLA
  // operation. After the "InDim" broadcasting implemented in this function
  // expands the rank, degenerate-dimension broadcasting (implemented in
  // InferDegenerateDimensionBroadcastShape) broadcasts dimensions of size one
  // up to match the dimension size of the other operand. For example, consider
  // the row in the table above with a smaller_shape of [2, 1]. The shape
  // returned by this function is [2, 3, 1] (output_shape) however, the result
  // shape of the XLA operation is [2, 3, 4] after degenerate-dimension
  // broadcasting.
  //
  // Invalid broadcasts:
  //
  // smaller_shape=[3], larger_shape=[4, 3], broadcast_dimensions={0}
  // Reason: Dimension zero** of larger_shape (size 4) is not compatible with
  //   dimension zero of smaller_shape(size 3). **Zero here comes from the value
  //   in broadcast_dimensions.
  //
  // smaller_shape=[2, 1], larger_shape=[2, 3, 4], broadcast_dimensions={1, 2}
  // Reason: Dimension one of larger_shape (size 3) is not compatible with
  //   dimension zero of smaller_shape(size 2)

  // The output shape is initially the larger_shape. Sizes of dimensions
  // specified in broadcast_dimensions are then changed to match the
  // corresponding dimension size in smaller_shape.
  Shape output_shape(larger_shape);
  output_shape.set_element_type(
      ShapeUtil::HigherPrecisionElementType(larger_shape, smaller_shape));

  for (int i = 0; i < smaller_shape.dimensions_size(); ++i) {
    int64 dimension_to_match = broadcast_dimensions.at(i);
    if (dimension_to_match < 0) {
      return InvalidArgument(
          "Broadcast dimension number (%d) cannot be negative.",
          dimension_to_match);
    }
    if (dimension_to_match >= larger_shape.dimensions_size()) {
      return InvalidArgument(
          "Broadcast dimension number (%d) too large; higher-rank "
          "operand has rank %d.",
          dimension_to_match, larger_shape.dimensions_size());
    }
    int64 small_dimension_size = smaller_shape.dimensions(i);
    int64 large_dimension_size = larger_shape.dimensions(dimension_to_match);
    // Dimension sizes must be compatible: match or be degenerate (degenerate
    // case is handled by degenerate dimension broadcasting which occurs after
    // InDim broadcasting).
    if (small_dimension_size != large_dimension_size &&
        small_dimension_size != 1 && large_dimension_size != 1) {
      return InvalidArgument(
          "Broadcast dimension %d mismatch: %d != %d; %s and %s.", i,
          small_dimension_size, large_dimension_size,
          ShapeUtil::HumanString(smaller_shape),
          ShapeUtil::HumanString(larger_shape));
    }
    // Make sure the broadcast dimensions are listed in a strictly increasing
    // order.
    if (i > 0 && broadcast_dimensions.at(i - 1) >= dimension_to_match) {
      return InvalidArgument(
          "Broadcast dimensions order is wrong: %d comes after %d.",
          dimension_to_match, broadcast_dimensions.at(i - 1));
    }

    output_shape.set_dimensions(dimension_to_match, small_dimension_size);
  }

  return output_shape;
}

/* static */ StatusOr<Shape> ShapeInference::InferElementwiseBinaryOpShape(
    HloOpcode operation, const Shape& lhs, const Shape& rhs,
    absl::Span<const int64> broadcast_dimensions) {
  TF_RETURN_IF_ERROR(ExpectArray(lhs, "lhs of elementwise binary operation"));
  TF_RETURN_IF_ERROR(ExpectArray(rhs, "rhs of elementwise binary operation"));

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(lhs, rhs)) {
    return InvalidArgument(
        "Binary op %s with different element types: %s and %s.",
        HloOpcodeString(operation), ShapeUtil::HumanString(lhs),
        ShapeUtil::HumanString(rhs));
  }

  if (ShapeUtil::Rank(lhs) == ShapeUtil::Rank(rhs)) {
    std::vector<int64> identity_dims(ShapeUtil::Rank(lhs));
    std::iota(identity_dims.begin(), identity_dims.end(), 0);
    if (!broadcast_dimensions.empty() &&
        broadcast_dimensions != identity_dims) {
      return InvalidArgument(
          "Broadcast dimensions field must either be not set or be the "
          "identity on binary operations with operands of the same rank.");
    }
  }

  if (ShapeUtil::CompatibleIgnoringFpPrecision(lhs, rhs)) {
    // If the shapes are the same other than layout, the output shape is the
    // same (elementwise op).
    return ShapeUtil::ChangeElementType(
        lhs, ShapeUtil::HigherPrecisionElementType(lhs, rhs));
  }

  if (ShapeUtil::Rank(lhs) == ShapeUtil::Rank(rhs)) {
    return InferDegenerateDimensionBroadcastShape(operation, lhs, rhs);
  } else {
    // Ranks do not match, so perform InDim broadcasting using
    // broadcast_dimensions. Scalar broadcasting is a special case of this.
    const Shape& larger_shape =
        ShapeUtil::Rank(lhs) > ShapeUtil::Rank(rhs) ? lhs : rhs;
    const Shape& smaller_shape =
        ShapeUtil::Rank(lhs) > ShapeUtil::Rank(rhs) ? rhs : lhs;

    // After InDim broadcasting, perform degenerate dimensions broadcasting.
    TF_ASSIGN_OR_RETURN(Shape indim_broadcast_shape,
                        InferInDimBroadcastShape(smaller_shape, larger_shape,
                                                 broadcast_dimensions));

    return InferDegenerateDimensionBroadcastShape(
        operation, indim_broadcast_shape, larger_shape);
  }
}

/* static */ StatusOr<Shape> ShapeInference::InferBinaryOpShape(
    HloOpcode opcode, const HloInstruction* lhs, const HloInstruction* rhs) {
  return InferBinaryOpShape(opcode, lhs->shape(), rhs->shape(),
                            /*broadcast_dimensions=*/{});
}

/* static */ StatusOr<Shape> ShapeInference::InferBinaryOpShape(
    HloOpcode opcode, const Shape& lhs, const Shape& rhs,
    absl::Span<const int64> broadcast_dimensions) {
  VLOG(2) << StrFormat(
      "inferring shape for <%s>(%s, %s) with broadcast_dimensions={%s}",
      HloOpcodeString(opcode), ShapeUtil::HumanString(lhs),
      ShapeUtil::HumanString(rhs), StrJoin(broadcast_dimensions, ", "));
  TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(lhs));
  TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(rhs));

  TF_RETURN_IF_ERROR(ExpectArray(
      lhs, absl::StrCat("lhs of binary operation ", HloOpcodeString(opcode))));
  TF_RETURN_IF_ERROR(ExpectArray(
      rhs, absl::StrCat("rhs of binary operation ", HloOpcodeString(opcode))));
  switch (opcode) {
    case HloOpcode::kMaximum:
    case HloOpcode::kMinimum:
    case HloOpcode::kSubtract:
    case HloOpcode::kAdd:
    case HloOpcode::kAtan2:
    case HloOpcode::kPower:
    case HloOpcode::kDivide:
    case HloOpcode::kRemainder:
    case HloOpcode::kMultiply:
    case HloOpcode::kShiftLeft:
    case HloOpcode::kShiftRightArithmetic:
    case HloOpcode::kShiftRightLogical:
      return InferElementwiseBinaryOpShape(opcode, lhs, rhs,
                                           broadcast_dimensions);

    case HloOpcode::kComplex: {
      if (!ShapeUtil::ElementIsFloating(lhs)) {
        return InvalidArgument(
            "Expected element type in shape to be floating for complex compose "
            "operation; got %s.",
            PrimitiveType_Name(lhs.element_type()));
      }
      TF_ASSIGN_OR_RETURN(const Shape& shape,
                          InferElementwiseBinaryOpShape(opcode, lhs, rhs,
                                                        broadcast_dimensions));
      if (lhs.element_type() == F32 && rhs.element_type() == F32) {
        return ShapeUtil::ChangeElementType(shape, C64);
      } else {
        return Unimplemented("Complex component type is not implemented.");
      }
    }
    case HloOpcode::kAnd:
    case HloOpcode::kOr:
    case HloOpcode::kXor:
      if (lhs.element_type() != PRED &&
          !primitive_util::IsIntegralType(lhs.element_type())) {
        return InvalidArgument(
            "Expected pred or integral type in argument to and/or operation; "
            "got %s.",
            PrimitiveType_Name(lhs.element_type()));
      }
      return InferElementwiseBinaryOpShape(opcode, lhs, rhs,
                                           broadcast_dimensions);
    case HloOpcode::kEq:
    case HloOpcode::kGe:
    case HloOpcode::kGt:
    case HloOpcode::kLe:
    case HloOpcode::kLt:
    case HloOpcode::kNe: {
      TF_ASSIGN_OR_RETURN(const Shape& shape,
                          InferElementwiseBinaryOpShape(opcode, lhs, rhs,
                                                        broadcast_dimensions));
      return ShapeUtil::ChangeElementType(shape, PRED);
    }
    default:
      return Unimplemented(
          "Binary op shape inference: %s; lhs: %s; rhs: %s is not implemented.",
          HloOpcodeString(opcode), lhs.ShortDebugString(),
          rhs.ShortDebugString());
  }
}

/* static */ StatusOr<Shape> ShapeInference::InferTernaryOpShape(
    HloOpcode opcode, const HloInstruction* lhs, const HloInstruction* rhs,
    const HloInstruction* ehs) {
  return InferTernaryOpShape(opcode, lhs->shape(), rhs->shape(), ehs->shape());
}

/* static */ StatusOr<Shape> ShapeInference::InferTernaryOpShape(
    HloOpcode opcode, const Shape& lhs, const Shape& rhs, const Shape& ehs) {
  TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(lhs));
  TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(rhs));
  TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(ehs));
  switch (opcode) {
    case HloOpcode::kClamp:
      return InferClampShape(lhs, rhs, ehs);
    case HloOpcode::kSelect:
      return InferSelectShape(lhs, rhs, ehs);
    case HloOpcode::kTupleSelect:
      return InferTupleSelectShape(lhs, rhs, ehs);
    default:
      return InvalidArgument("Unknown operation %s.", HloOpcodeString(opcode));
  }
}

/* static */ StatusOr<Shape> ShapeInference::InferVariadicOpShape(
    HloOpcode opcode, absl::Span<const HloInstruction* const> operands) {
  std::vector<const Shape*> operand_shapes;
  operand_shapes.reserve(operands.size());
  for (const HloInstruction* operand : operands) {
    operand_shapes.push_back(&operand->shape());
  }
  return InferVariadicOpShape(opcode, operand_shapes);
}

/* static */ StatusOr<Shape> ShapeInference::InferVariadicOpShape(
    HloOpcode opcode, absl::Span<const Shape* const> operand_shapes) {
  for (const Shape* shape : operand_shapes) {
    TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(*shape));
  }
  switch (opcode) {
    case HloOpcode::kTuple: {
      Shape result = ShapeUtil::MakeTupleShape({});
      result.mutable_tuple_shapes()->Reserve(operand_shapes.size());
      for (const Shape* shape : operand_shapes) {
        ShapeUtil::AppendShapeToTuple(*shape, &result);
      }
      return result;
    }
    case HloOpcode::kSort: {
      if (operand_shapes.size() == 1) {
        return *operand_shapes[0];
      } else if (operand_shapes.size() == 2) {
        if (!ShapeUtil::SameDimensions(*operand_shapes[0],
                                       *operand_shapes[1])) {
          return InvalidArgument(
              "Sort keys and values dimensions must match. "
              "Keys shape is: %s\n, Values shape is: %s",
              ShapeUtil::HumanString(*operand_shapes[0]),
              ShapeUtil::HumanString(*operand_shapes[1]));
        }
        return ShapeUtil::MakeTupleShape(
            {*operand_shapes[0], *operand_shapes[1]});
      }
      return InvalidArgument("Unexpected number of operands for sort");
    }
    default:
      return InvalidArgument("Unknown operation %s.", HloOpcodeString(opcode));
  }
}

/* static */ StatusOr<Shape> ShapeInference::InferMapShape(
    absl::Span<const Shape* const> arg_shapes, const ProgramShape& to_apply,
    absl::Span<const int64> dimensions) {
  if (arg_shapes.empty()) {
    return InvalidArgument("Map expects at least one argument.");
  }

  // All arguments must have the same shape.
  const Shape* arg_shape = arg_shapes[0];
  for (size_t i = 1; i < arg_shapes.size(); ++i) {
    TF_RETURN_IF_ERROR(ExpectArray(*arg_shapes[i], "operand of map"));

    if (ShapeUtil::CompatibleIgnoringFpPrecision(*arg_shapes[i], *arg_shape)) {
      continue;
    }
    if (ShapeUtil::SameElementTypeIgnoringFpPrecision(*arg_shapes[i],
                                                      *arg_shape)) {
      if (ShapeUtil::IsScalar(*arg_shapes[i])) {
        continue;
      }
      if (ShapeUtil::IsScalar(*arg_shape)) {
        arg_shape = arg_shapes[i];
        continue;
      }
    }

    std::vector<string> pieces;
    for (const Shape* shape : arg_shapes) {
      pieces.push_back(ShapeUtil::HumanString(*shape));
    }
    return InvalidArgument(
        "Map operation requires all operands to have the same shape; got: "
        "%s.",
        StrJoin(pieces, ", "));
  }

  // Check that dimensions.size == arg_shape.dimensions_size() (we currently
  // only support mapping across all dimensions: i.e. scalar map functions).
  if (dimensions.size() != arg_shape->dimensions_size()) {
    return InvalidArgument(
        "Map applied to a subset of dimensions currently not supported: "
        "arg_dimension_size: %d, requested_map_dimensions_size: %u.",
        arg_shape->dimensions_size(), dimensions.size());
  }

  // Check that requested map dimensions numbers are monotonically increasing.
  for (int i = 0; i < dimensions.size(); ++i) {
    if (dimensions[i] != i) {
      return InvalidArgument(
          "Map requires monotonically increasing dimension numbers; got: %s.",
          StrJoin(dimensions, ", "));
    }
  }

  // The applied function's arity equals the number of arguments.
  if (arg_shapes.size() != to_apply.parameters_size()) {
    return InvalidArgument(
        "Map applied function arity must match number of arguments; got: "
        "arity: %d, arguments: %u.",
        to_apply.parameters_size(), arg_shapes.size());
  }

  // The parameters should all be scalars, and the output too.
  const Shape& output_shape = to_apply.result();
  if (!ShapeUtil::IsScalar(output_shape)) {
    return InvalidArgument(
        "Mapped computation's result has to be a scalar; got: %s.",
        ShapeUtil::HumanString(output_shape));
  }

  for (int i = 0; i < to_apply.parameters_size(); ++i) {
    const Shape& parameter_shape = to_apply.parameters(i);

    if (!ShapeUtil::IsScalar(parameter_shape)) {
      return InvalidArgument(
          "Mapped computation's parameter has to be a scalar; "
          "got parameter %d shape: %s.",
          i, ShapeUtil::HumanString(parameter_shape));
    }

    if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(parameter_shape,
                                                       *arg_shape)) {
      return InvalidArgument(
          "Mapped computation's parameter type has to match argument element "
          "type; got parameter %d shape: %s, argument shape: %s.",
          i, ShapeUtil::HumanString(parameter_shape),
          ShapeUtil::HumanString(*arg_shape));
    }
  }

  return ShapeUtil::MakeShape(output_shape.element_type(),
                              AsInt64Slice(arg_shape->dimensions()));
}

/* static */ StatusOr<Shape> ShapeInference::InferBatchNormTrainingShape(
    const Shape& operand_shape, const Shape& scale_shape,
    const Shape& offset_shape, int64 feature_index) {
  TF_RETURN_IF_ERROR(
      ExpectArray(operand_shape, "operand of batch norm training"));
  TF_RETURN_IF_ERROR(
      ExpectArray(offset_shape, "offset input of batch norm training"));
  TF_RETURN_IF_ERROR(
      ExpectArray(scale_shape, "scale input of batch norm training"));

  TF_RET_CHECK(ShapeUtil::ValidateShapeWithOptionalLayout(operand_shape) ==
               Status::OK());
  TF_RET_CHECK(ShapeUtil::ValidateShapeWithOptionalLayout(offset_shape) ==
               Status::OK());
  TF_RET_CHECK(ShapeUtil::ValidateShapeWithOptionalLayout(scale_shape) ==
               Status::OK());

  if (feature_index >= ShapeUtil::Rank(operand_shape)) {
    return InvalidArgument(
        "Expected feature_index of batch-norm-training to be "
        "smaller than the rank of operand_shape; "
        "got feature_index %d, and rank %d.",
        feature_index, ShapeUtil::Rank(operand_shape));
  }

  if (feature_index < 0) {
    return InvalidArgument(
        "Expected feature_index of batch-norm-training to "
        "be a non-negative number, got %d.",
        feature_index);
  }

  if (ShapeUtil::Rank(operand_shape) < 1) {
    return InvalidArgument(
        "Expected the rank of operand to "
        "batch-norm-training to be at least 1; got %d.",
        ShapeUtil::Rank(operand_shape));
  }

  if (ShapeUtil::Rank(offset_shape) != 1) {
    return InvalidArgument(
        "Offset input of batch-norm-training must have"
        " rank 1, but has rank %d.",
        ShapeUtil::Rank(offset_shape));
  }

  if (ShapeUtil::Rank(scale_shape) != 1) {
    return InvalidArgument(
        "Scale input of batch-norm-training must have"
        " rank 1, but has rank %d.",
        ShapeUtil::Rank(scale_shape));
  }

  if (!ShapeUtil::ElementIsFloating(operand_shape)) {
    return InvalidArgument(
        "The operand to batch-norm-training must have a floating point "
        "element type, but the shape is %s.",
        PrimitiveType_Name(operand_shape.element_type()));
  }

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(offset_shape,
                                                     operand_shape)) {
    return InvalidArgument(
        "The inputs should have the same element type for batch-norm-training, "
        "but the shape of offset factor is %s "
        "and the shape of operand is %s.",
        PrimitiveType_Name(offset_shape.element_type()),
        PrimitiveType_Name(operand_shape.element_type()));
  }

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(scale_shape,
                                                     operand_shape)) {
    return InvalidArgument(
        "The inputs should have the same element type for batch-norm-training, "
        "but the shape of scale factor is %s "
        "and the shape of operand is %s.",
        PrimitiveType_Name(scale_shape.element_type()),
        PrimitiveType_Name(operand_shape.element_type()));
  }

  const int64 feature_count = operand_shape.dimensions(feature_index);
  Shape output_shape_for_mean_and_var =
      ShapeUtil::MakeShape(operand_shape.element_type(), {feature_count});

  if (ShapeUtil::GetDimension(offset_shape, 0) != feature_count) {
    return InvalidArgument(
        "The size of offset factor should be the same as feature count,"
        "but the size of offset factor is %d "
        "and the feature count is %d.",
        ShapeUtil::GetDimension(offset_shape, 0), feature_count);
  }

  if (ShapeUtil::GetDimension(scale_shape, 0) != feature_count) {
    return InvalidArgument(
        "The size of scale factor should be the same as feature count,"
        "but the size of scale factor is %d "
        "and the feature count is %d.",
        ShapeUtil::GetDimension(scale_shape, 0), feature_count);
  }

  return ShapeUtil::MakeTupleShape({operand_shape,
                                    output_shape_for_mean_and_var,
                                    output_shape_for_mean_and_var});
}

/* static */ StatusOr<Shape> ShapeInference::InferBatchNormInferenceShape(
    const Shape& operand_shape, const Shape& scale_shape,
    const Shape& offset_shape, const Shape& mean_shape,
    const Shape& variance_shape, int64 feature_index) {
  TF_RETURN_IF_ERROR(
      ExpectArray(operand_shape, "operand of batch norm inference"));
  TF_RETURN_IF_ERROR(
      ExpectArray(offset_shape, "offset input of batch norm inference"));
  TF_RETURN_IF_ERROR(
      ExpectArray(scale_shape, "scale input of batch norm inference"));

  TF_RET_CHECK(ShapeUtil::ValidateShapeWithOptionalLayout(operand_shape) ==
               Status::OK());
  TF_RET_CHECK(ShapeUtil::ValidateShapeWithOptionalLayout(offset_shape) ==
               Status::OK());
  TF_RET_CHECK(ShapeUtil::ValidateShapeWithOptionalLayout(scale_shape) ==
               Status::OK());
  TF_RET_CHECK(ShapeUtil::ValidateShapeWithOptionalLayout(mean_shape) ==
               Status::OK());
  TF_RET_CHECK(ShapeUtil::ValidateShapeWithOptionalLayout(variance_shape) ==
               Status::OK());

  if (feature_index >= ShapeUtil::Rank(operand_shape)) {
    return InvalidArgument(
        "Expected feature_index of batch-norm-inference to be "
        "smaller than the rank of operand_shape; "
        "got feature_index %d, and rank %d.",
        feature_index, ShapeUtil::Rank(operand_shape));
  }

  if (feature_index < 0) {
    return InvalidArgument(
        "Expected feature_index of batch-norm-inference to "
        "be a non-negative number, got %d.",
        feature_index);
  }

  if (ShapeUtil::Rank(operand_shape) < 1) {
    return InvalidArgument(
        "Expected the rank of operand to "
        "batch-norm-inference to be at least 1; got %d.",
        ShapeUtil::Rank(operand_shape));
  }

  if (ShapeUtil::Rank(offset_shape) != 1) {
    return InvalidArgument(
        "Offset input of batch-norm-inference must have"
        " rank 1, but has rank %d.",
        ShapeUtil::Rank(offset_shape));
  }

  if (ShapeUtil::Rank(scale_shape) != 1) {
    return InvalidArgument(
        "Scale input of batch-norm-inference must have"
        " rank 1, but has rank %d.",
        ShapeUtil::Rank(scale_shape));
  }

  if (!ShapeUtil::ElementIsFloating(operand_shape)) {
    return InvalidArgument(
        "The operand to batch-norm-inference must have a floating point "
        "element type, but the shape is %s.",
        PrimitiveType_Name(operand_shape.element_type()));
  }

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(offset_shape,
                                                     operand_shape)) {
    return InvalidArgument(
        "The inputs should have the same element type for "
        "batch-norm-inference, "
        "but the shape of offset factor is %s "
        "and the shape of operand is %s.",
        PrimitiveType_Name(offset_shape.element_type()),
        PrimitiveType_Name(operand_shape.element_type()));
  }

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(scale_shape,
                                                     operand_shape)) {
    return InvalidArgument(
        "The inputs should have the same element type for "
        "batch-norm-inference, "
        "but the shape of scale factor is %s "
        "and the shape of operand is %s.",
        PrimitiveType_Name(scale_shape.element_type()),
        PrimitiveType_Name(operand_shape.element_type()));
  }

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(mean_shape,
                                                     operand_shape)) {
    return InvalidArgument(
        "The inputs should have the same element type for "
        "batch-norm-inference, "
        "but the shape of mean is %s "
        "and the shape of operand is %s.",
        PrimitiveType_Name(mean_shape.element_type()),
        PrimitiveType_Name(operand_shape.element_type()));
  }

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(variance_shape,
                                                     operand_shape)) {
    return InvalidArgument(
        "The inputs should have the same element type for "
        "batch-norm-inference, "
        "but the shape of variance is %s "
        "and the shape of operand is %s.",
        PrimitiveType_Name(mean_shape.element_type()),
        PrimitiveType_Name(variance_shape.element_type()));
  }

  const int64 feature_count = operand_shape.dimensions(feature_index);
  Shape output_shape_for_mean_and_var =
      ShapeUtil::MakeShape(operand_shape.element_type(), {feature_count});

  if (ShapeUtil::GetDimension(offset_shape, 0) != feature_count) {
    return InvalidArgument(
        "The size of offset factor should be the same as feature count,"
        "but the size of offset factor is %d "
        "and the feature count is %d.",
        ShapeUtil::GetDimension(offset_shape, 0), feature_count);
  }

  if (ShapeUtil::GetDimension(scale_shape, 0) != feature_count) {
    return InvalidArgument(
        "The size of scale factor should be the same as feature count,"
        "but the size of scale factor is %d "
        "and the feature count is %d.",
        ShapeUtil::GetDimension(scale_shape, 0), feature_count);
  }

  if (ShapeUtil::GetDimension(mean_shape, 0) != feature_count) {
    return InvalidArgument(
        "The size of mean should be the same as feature count,"
        "but the size of mean is %d "
        "and the feature count is %d.",
        ShapeUtil::GetDimension(mean_shape, 0), feature_count);
  }

  if (ShapeUtil::GetDimension(variance_shape, 0) != feature_count) {
    return InvalidArgument(
        "The size of variance should be the same as feature count,"
        "but the size of variance is %d "
        "and the feature count is %d.",
        ShapeUtil::GetDimension(variance_shape, 0), feature_count);
  }

  return operand_shape;
}

/* static */ StatusOr<Shape> ShapeInference::InferBatchNormGradShape(
    const Shape& operand_shape, const Shape& scale_shape,
    const Shape& mean_shape, const Shape& var_shape,
    const Shape& output_grad_shape, int64 feature_index) {
  TF_RETURN_IF_ERROR(ExpectArray(operand_shape, "operand of batch norm grad"));
  TF_RETURN_IF_ERROR(
      ExpectArray(scale_shape, "scale input of batch norm grad"));
  TF_RETURN_IF_ERROR(ExpectArray(mean_shape, "mean input of batch norm grad"));
  TF_RETURN_IF_ERROR(ExpectArray(var_shape, "var input of batch norm grad"));
  TF_RETURN_IF_ERROR(
      ExpectArray(output_grad_shape, "output_grad input of batch norm grad"));

  TF_RETURN_IF_ERROR(ShapeUtil::ValidateShapeWithOptionalLayout(operand_shape));
  TF_RETURN_IF_ERROR(ShapeUtil::ValidateShapeWithOptionalLayout(mean_shape));
  TF_RETURN_IF_ERROR(ShapeUtil::ValidateShapeWithOptionalLayout(scale_shape));
  TF_RETURN_IF_ERROR(ShapeUtil::ValidateShapeWithOptionalLayout(var_shape));
  TF_RETURN_IF_ERROR(
      ShapeUtil::ValidateShapeWithOptionalLayout(output_grad_shape));

  if (feature_index >= ShapeUtil::Rank(operand_shape)) {
    return InvalidArgument(
        "Expected feature_index of batch-norm-grad to be "
        "smaller than the rank of operand_shape; "
        "got feature_index %d, and rank %d.",
        feature_index, ShapeUtil::Rank(operand_shape));
  }

  if (ShapeUtil::Rank(operand_shape) != ShapeUtil::Rank(output_grad_shape)) {
    return InvalidArgument(
        "Expected operand_shape of batch-norm-grad to have the same rank as"
        " output_grad_shape; got rank(oprand_shape) %d, and"
        " rank(output_grad_shape) %d.",
        ShapeUtil::Rank(operand_shape), ShapeUtil::Rank(output_grad_shape));
  }

  if (ShapeUtil::Rank(mean_shape) != 1) {
    return InvalidArgument(
        "Mean input of batch-norm-grad must have"
        " rank 1, but has rank %d.",
        ShapeUtil::Rank(mean_shape));
  }

  if (ShapeUtil::Rank(scale_shape) != 1) {
    return InvalidArgument(
        "Scale input of batch-norm-grad must have"
        " rank 1, but has rank %d.",
        ShapeUtil::Rank(scale_shape));
  }

  if (ShapeUtil::Rank(var_shape) != 1) {
    return InvalidArgument(
        "Var input of batch-norm-grad must have"
        " rank 1, but has rank %d.",
        ShapeUtil::Rank(var_shape));
  }

  if (!ShapeUtil::ElementIsFloating(operand_shape)) {
    return InvalidArgument(
        "The operand to batch-norm-grad must have a floating point "
        "element type, but the shape is %s.",
        PrimitiveType_Name(operand_shape.element_type()));
  }

  if (!ShapeUtil::ElementIsFloating(output_grad_shape)) {
    return InvalidArgument(
        "The output_grad to batch-norm-grad must have a floating point "
        "element type, but the shape is %s.",
        PrimitiveType_Name(output_grad_shape.element_type()));
  }

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(output_grad_shape,
                                                     operand_shape)) {
    return InvalidArgument(
        "The inputs should have the same element type for batch-norm-grad, "
        "but the element type of output_grad is %s "
        "and the element type of operand is %s.",
        PrimitiveType_Name(output_grad_shape.element_type()),
        PrimitiveType_Name(operand_shape.element_type()));
  }

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(scale_shape,
                                                     operand_shape)) {
    return InvalidArgument(
        "The inputs should have the same element type for batch-norm-grad, "
        "but the element type of scale factor is %s "
        "and the element type of operand is %s.",
        PrimitiveType_Name(scale_shape.element_type()),
        PrimitiveType_Name(operand_shape.element_type()));
  }

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(mean_shape,
                                                     operand_shape)) {
    return InvalidArgument(
        "The inputs should have the same element type for batch-norm-grad, "
        "but the element type of mean is %s "
        "and the element type of operand is %s.",
        PrimitiveType_Name(mean_shape.element_type()),
        PrimitiveType_Name(operand_shape.element_type()));
  }

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(var_shape,
                                                     operand_shape)) {
    return InvalidArgument(
        "The inputs should have the same element type for batch-norm-grad, "
        "but the element type of mean is %s "
        "and the element type of operand is %s.",
        PrimitiveType_Name(mean_shape.element_type()),
        PrimitiveType_Name(operand_shape.element_type()));
  }

  const int64 feature_count = operand_shape.dimensions(feature_index);

  Shape feature_shape =
      ShapeUtil::MakeShape(operand_shape.element_type(), {feature_count});

  if (ShapeUtil::GetDimension(mean_shape, 0) != feature_count) {
    return InvalidArgument(
        "The size of mean should be the same as feature count,"
        "but the size of offset factor is %d "
        "and the feature count is %d.",
        ShapeUtil::GetDimension(mean_shape, 0), feature_count);
  }

  if (ShapeUtil::GetDimension(scale_shape, 0) != feature_count) {
    return InvalidArgument(
        "The size of scale factor should be the same as feature count,"
        "but the size of scale factor is %d "
        "and the feature count is %d.",
        ShapeUtil::GetDimension(scale_shape, 0), feature_count);
  }

  if (ShapeUtil::GetDimension(var_shape, 0) != feature_count) {
    return InvalidArgument(
        "The size of variance should be the same as feature count,"
        "but the size of variance is %d "
        "and the feature count is %d.",
        ShapeUtil::GetDimension(var_shape, 0), feature_count);
  }

  // Verify operand_shape and output_grad_shape have same bounds.
  for (int64 i = 0; i < ShapeUtil::Rank(operand_shape); ++i) {
    if (ShapeUtil::GetDimension(operand_shape, i) !=
        ShapeUtil::GetDimension(output_grad_shape, i)) {
      return InvalidArgument(
          "The bounds of operand shape should be the same as output_grad's,"
          "but the bound of operand_shape at dimension %d is %d "
          "and the bound of output_grad_shape is %d.",
          i, ShapeUtil::GetDimension(operand_shape, i),
          ShapeUtil::GetDimension(output_grad_shape, i));
    }
  }

  return ShapeUtil::MakeTupleShape(
      {operand_shape, feature_shape, feature_shape});
}

/* static */ StatusOr<Shape> ShapeInference::InferConvolveShape(
    const Shape& lhs, const Shape& rhs, int64 feature_group_count,
    const Window& window, const ConvolutionDimensionNumbers& dnums) {
  TF_RETURN_IF_ERROR(ExpectArray(lhs, "lhs of convolution"));
  TF_RETURN_IF_ERROR(ExpectArray(rhs, "rhs of convolution"));

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(lhs, rhs)) {
    return InvalidArgument(
        "Convolution with different element types: %s and %s.",
        ShapeUtil::HumanString(lhs), ShapeUtil::HumanString(rhs));
  }
  if (dnums.input_spatial_dimensions_size() !=
      dnums.kernel_spatial_dimensions_size()) {
    return InvalidArgument(
        "Both arguments to convolution must have same number of dimensions.\n"
        "Window: %s",
        window.DebugString());
  }

  const int num_spatial_dims = dnums.input_spatial_dimensions_size();
  if (window.dimensions_size() != num_spatial_dims) {
    return InvalidArgument(
        "Window must have same number of dimensions as dimension numbers.\n"
        "Window: %s\nDimension numbers: %s.",
        window.DebugString(), dnums.DebugString());
  }

  const int num_dims = num_spatial_dims + 2;
  if (ShapeUtil::Rank(lhs) != num_dims) {
    return InvalidArgument(
        "The LHS argument to a convolution should have rank %d; lhs: %s.",
        num_dims, ShapeUtil::HumanString(lhs));
  }
  if (ShapeUtil::Rank(rhs) != num_dims) {
    return InvalidArgument(
        "The RHS argument to a convolution should have rank %d; lhs: %s.",
        num_dims, ShapeUtil::HumanString(lhs));
  }
  TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(lhs));
  TF_DCHECK_OK(ShapeUtil::ValidateShapeWithOptionalLayout(rhs));

  // Verifies that the input and window dimensions are a permutation of
  // the dimension numbers.
  std::vector<int64> input_dnums(num_dims);
  input_dnums[0] = dnums.input_batch_dimension();
  input_dnums[1] = dnums.input_feature_dimension();
  std::copy(dnums.input_spatial_dimensions().begin(),
            dnums.input_spatial_dimensions().end(), input_dnums.begin() + 2);
  std::sort(input_dnums.begin(), input_dnums.end());

  std::vector<int64> window_dnums(num_dims);
  window_dnums[0] = dnums.kernel_input_feature_dimension();
  window_dnums[1] = dnums.kernel_output_feature_dimension();
  std::copy(dnums.kernel_spatial_dimensions().begin(),
            dnums.kernel_spatial_dimensions().end(), window_dnums.begin() + 2);
  std::sort(window_dnums.begin(), window_dnums.end());

  std::vector<int64> output_dnums(num_dims);
  output_dnums[0] = dnums.output_batch_dimension();
  output_dnums[1] = dnums.output_feature_dimension();
  std::copy(dnums.output_spatial_dimensions().begin(),
            dnums.output_spatial_dimensions().end(), output_dnums.begin() + 2);
  std::sort(output_dnums.begin(), output_dnums.end());

  std::vector<int64> expected_dnums(num_dims);
  std::iota(expected_dnums.begin(), expected_dnums.end(), 0);

  const auto in_range = [num_dims](int64 i) { return 0 <= i && i < num_dims; };
  if (!std::all_of(input_dnums.begin(), input_dnums.end(), in_range) ||
      !std::all_of(window_dnums.begin(), window_dnums.end(), in_range) ||
      !std::all_of(output_dnums.begin(), output_dnums.end(), in_range)) {
    return InvalidArgument(
        "A dimension number is out of range in convolution: %s.",
        dnums.DebugString());
  }

  if (input_dnums != expected_dnums) {
    return InvalidArgument(
        "Input dimensions of convolution must contain each dimension exactly "
        "once: %s.",
        dnums.DebugString());
  }
  if (window_dnums != expected_dnums) {
    return InvalidArgument(
        "Window dimensions of convolution must contain each dimension exactly "
        "once: %s.",
        dnums.DebugString());
  }
  if (output_dnums != expected_dnums) {
    return InvalidArgument(
        "Output dimensions of convolution must contain each dimension exactly "
        "once: %s.",
        dnums.DebugString());
  }

  std::vector<int64> input_spatial_dims(num_spatial_dims);
  for (int i = 0; i < num_spatial_dims; ++i) {
    input_spatial_dims[i] = lhs.dimensions(dnums.input_spatial_dimensions(i));
  }
  const int64 input_features = lhs.dimensions(dnums.input_feature_dimension());
  const int64 input_batch = lhs.dimensions(dnums.input_batch_dimension());

  std::vector<int64> kernel_spatial_dims(num_spatial_dims);
  for (int i = 0; i < num_spatial_dims; ++i) {
    kernel_spatial_dims[i] = rhs.dimensions(dnums.kernel_spatial_dimensions(i));
  }
  const int64 kernel_input_features =
      rhs.dimensions(dnums.kernel_input_feature_dimension());
  const int64 kernel_output_features =
      rhs.dimensions(dnums.kernel_output_feature_dimension());

  if (input_features != kernel_input_features * feature_group_count) {
    return InvalidArgument(
        "Expected LHS feature dimension (value %d) to match RHS "
        "input feature dimension * feature_group_count (value %d * %d = %d); "
        "got <conv>(%s, %s)\n"
        "Dimension numbers: {%s}.",
        input_features, kernel_input_features, feature_group_count,
        kernel_input_features * feature_group_count,
        ShapeUtil::HumanString(lhs), ShapeUtil::HumanString(rhs),
        dnums.DebugString());
  }
  if (kernel_output_features % feature_group_count > 0) {
    return InvalidArgument(
        "Expected output feature dimension (value %d) to be divisible by "
        "feature_group_count (value %d); "
        "got <conv>(%s, %s)\n"
        "Dimension numbers: {%s}.",
        kernel_output_features, feature_group_count,
        ShapeUtil::HumanString(lhs), ShapeUtil::HumanString(rhs),
        dnums.DebugString());
  }
  std::vector<int64> window_dims(num_spatial_dims);
  for (int i = 0; i < num_spatial_dims; ++i) {
    window_dims[i] = window.dimensions(i).size();
  }
  if (kernel_spatial_dims != window_dims) {
    return InvalidArgument(
        "Window dimensions do not match RHS shape:\n\t"
        "RHS shape: %s\n\t"
        "Window: {%s}\n\t"
        "Dimension numbers: {%s}.",
        ShapeUtil::HumanString(rhs), window.ShortDebugString(),
        dnums.ShortDebugString());
  }

  Shape base_shape =
      ShapeUtil::MakeShape(lhs.element_type(), input_spatial_dims);
  TF_ASSIGN_OR_RETURN(
      Shape window_output_shape,
      InferWindowOutputShape(base_shape, window, lhs.element_type(),
                             /*allow_negative_padding=*/true));

  std::vector<int64> dimensions(num_dims);
  dimensions[dnums.output_batch_dimension()] = input_batch;
  dimensions[dnums.output_feature_dimension()] = kernel_output_features;
  for (int i = 0; i < num_spatial_dims; ++i) {
    dimensions[dnums.output_spatial_dimensions(i)] =
        window_output_shape.dimensions(i);
  }
  return ShapeUtil::MakeShape(ShapeUtil::HigherPrecisionElementType(lhs, rhs),
                              dimensions);
}

/* static */ StatusOr<Shape> ShapeInference::InferFftShape(
    const Shape& in, const FftType fft_type,
    const absl::Span<const int64> fft_length) {
  const int64 fft_rank = fft_length.size();
  if (fft_rank < 1 || fft_rank > 3) {
    return InvalidArgument("FFT only supports ranks 1-3; got %d.", fft_rank);
  }
#define RET_CHECK_RANK(x)                            \
  if (x.dimensions_size() < fft_rank) {              \
    return InvalidArgument(                          \
        "FFT of rank %d requires input of at least " \
        "same rank; got input of rank %d",           \
        fft_rank, x.dimensions_size());              \
  }
  switch (fft_type) {
    case FFT:
    case IFFT:
      if (in.element_type() != C64) {
        return InvalidArgument("%s requires C64 input type, found %s.",
                               FftType_Name(fft_type),
                               PrimitiveType_Name(in.element_type()));
      }
      RET_CHECK_RANK(in);
      return in;
    case RFFT: {
      if (in.element_type() != F32) {
        return InvalidArgument("RFFT requires F32 input type, found %s.",
                               PrimitiveType_Name(in.element_type()));
      }
      RET_CHECK_RANK(in);
      for (int i = 0; i < fft_rank; i++) {
        if (in.dimensions(in.dimensions_size() - fft_rank + i) !=
            fft_length[i]) {
          return InvalidArgument(
              "RFFT requires innermost dimensions match fft_length but "
              "dimension %d is %d and should be %d.",
              in.dimensions_size() - fft_rank + i,
              in.dimensions(in.dimensions_size() - fft_rank + i),
              fft_length[i]);
        }
      }
      Shape result = ShapeUtil::ChangeElementType(in, C64);
      result.set_dimensions(result.dimensions_size() - 1,
                            fft_length[fft_rank - 1] / 2 + 1);
      return result;
    }
    case IRFFT: {
      if (in.element_type() != C64) {
        return InvalidArgument("IRFFT requires C64 input type, found %s.",
                               PrimitiveType_Name(in.element_type()));
      }
      RET_CHECK_RANK(in);
      Shape result = ShapeUtil::ComplexComponentShape(in);
      for (int i = 0; i < fft_rank - 1; i++) {
        if (in.dimensions(in.dimensions_size() - fft_rank + i) !=
            fft_length[i]) {
          return InvalidArgument(
              "IRFFT requires all but one innermost dimensions match "
              "fft_length, but dimension %d is %d and should be %d.",
              in.dimensions_size() - fft_rank + i,
              in.dimensions(in.dimensions_size() - fft_rank + i),
              fft_length[i]);
        }
      }
      if (in.dimensions(in.dimensions_size() - 1) !=
          fft_length[fft_rank - 1] / 2 + 1) {
        return InvalidArgument(
            "IRFFT requires innermost dimension matches fft_length/2+1, but "
            "dimension %d is %d and should be %d.",
            in.dimensions_size() - 1, in.dimensions(in.dimensions_size() - 1),
            fft_length[fft_rank - 1] / 2 + 1);
      }
      result.set_dimensions(result.dimensions_size() - 1,
                            fft_length[fft_rank - 1]);
      return result;
    }
    default:
      LOG(FATAL) << "Unexpected fft_type: " << fft_type;
  }
#undef RET_CHECK_RANK
}

/* static */ StatusOr<Shape> ShapeInference::InferCrossReplicaSumShape(
    absl::Span<const Shape* const> operand_shapes) {
  for (const Shape* operand_shape : operand_shapes) {
    TF_RETURN_IF_ERROR(
        ExpectArray(*operand_shape, "operand of cross replica sum"));
  }
  if (operand_shapes.size() == 1) {
    return *operand_shapes[0];
  }
  std::vector<Shape> operand_shape_values;
  for (const Shape* operand_shape : operand_shapes) {
    operand_shape_values.push_back(*operand_shape);
  }
  return ShapeUtil::MakeTupleShape(operand_shape_values);
}

/* static */ StatusOr<Shape> ShapeInference::InferAllToAllShape(
    const Shape& shape, int64 split_dimension, int64 concat_dimension,
    int64 split_count) {
  TF_RET_CHECK(split_count > 0);
  if (split_dimension >= ShapeUtil::Rank(shape) || split_dimension < 0) {
    return InvalidArgument(
        "AllToAll split_dimension %d is out-of-bounds in shape %s.",
        split_dimension, ShapeUtil::HumanString(shape));
  }
  if (concat_dimension >= ShapeUtil::Rank(shape) || concat_dimension < 0) {
    return InvalidArgument(
        "AllToAll concat_dimension %d is out-of-bounds in shape %s.",
        concat_dimension, ShapeUtil::HumanString(shape));
  }
  if (shape.dimensions(split_dimension) % split_count != 0) {
    return InvalidArgument(
        "AllToAll split dimension size %d must be dividable by split_count "
        "%d.",
        shape.dimensions(split_dimension), split_count);
  }
  std::vector<int64> new_dimensions(shape.dimensions().begin(),
                                    shape.dimensions().end());
  new_dimensions[split_dimension] /= split_count;
  new_dimensions[concat_dimension] *= split_count;
  return ShapeUtil::MakeShape(shape.element_type(), new_dimensions);
}

/* static */ StatusOr<Shape> ShapeInference::InferAllToAllTupleShape(
    absl::Span<const Shape* const> operand_shapes) {
  // An Alltoall HLO instruction receives N operands (with the same shape) and
  // returns a tuple that contains N array shapes.
  TF_RET_CHECK(!operand_shapes.empty());
  for (int i = 0; i < operand_shapes.size(); i++) {
    if (!ShapeUtil::Equal(*operand_shapes[0], *operand_shapes[i])) {
      return InvalidArgument(
          "HLO all-to-all has operands with different shapes: the 0th "
          "operand shape %s, but the %dth operand has shape %s.",
          ShapeUtil::HumanString(*operand_shapes[0]), i,
          ShapeUtil::HumanString(*operand_shapes[i]));
    }
  }

  return InferVariadicOpShape(HloOpcode::kTuple, operand_shapes);
}

/* static */ StatusOr<Shape> ShapeInference::InferCollectivePermuteShape(
    const Shape& shape) {
  TF_RET_CHECK(ShapeUtil::IsArray(shape));
  return shape;
}

/* static */ StatusOr<Shape> ShapeInference::InferReduceShape(
    absl::Span<const Shape* const> arg_shapes,
    absl::Span<const int64> dimensions_to_reduce,
    const ProgramShape& to_apply) {
  if (arg_shapes.empty()) {
    return InvalidArgument("Reduce must have at least 2 arguments, has 0");
  }
  if (arg_shapes.size() % 2) {
    return InvalidArgument(
        "Reduce must have an even number of arguments, has %lu",
        arg_shapes.size());
  }
  int64 num_reduced_args = arg_shapes.size() / 2;

  auto reduced_args = arg_shapes.subspan(0, num_reduced_args);
  // Check that all of the reduced tensors have the same dimensions. The element
  // types may be different.
  for (int64 i = 1; i < num_reduced_args; ++i) {
    if (!ShapeUtil::SameDimensions(*reduced_args[0], *reduced_args[i])) {
      return InvalidArgument(
          "All reduced tensors must have the sime dimension. Tensor 0 has "
          "shape %s, Tensor %d has shape %s",
          ShapeUtil::HumanString(*reduced_args[0]), i,
          ShapeUtil::HumanString(*reduced_args[i]));
    }
  }

  // Check that the dimensions to reduce are in-bounds for the given shape.
  // We've already verified all reduced tensors have the same dimensions, so it
  // doesn't matter which one we choose.
  const Shape& arg = *reduced_args[0];
  for (int64 dimension : dimensions_to_reduce) {
    if (dimension >= ShapeUtil::Rank(arg) || dimension < 0) {
      return InvalidArgument("Reducing out-of-bounds dimension %d in shape %s.",
                             dimension, ShapeUtil::HumanString(arg));
    }
  }

  auto init_values = arg_shapes.subspan(num_reduced_args, arg_shapes.size());
  std::vector<PrimitiveType> element_types;
  for (const Shape* arg : reduced_args) {
    element_types.push_back(arg->element_type());
  }
  TF_RETURN_IF_ERROR(VerifyReducerShape(to_apply, init_values, element_types,
                                        num_reduced_args));

  std::set<int64> dimensions_to_reduce_set(dimensions_to_reduce.begin(),
                                           dimensions_to_reduce.end());
  std::vector<int64> new_dimensions;
  for (int i = 0; i < ShapeUtil::Rank(arg); ++i) {
    if (dimensions_to_reduce_set.find(i) == dimensions_to_reduce_set.end()) {
      new_dimensions.push_back(arg.dimensions(i));
    }
  }

  if (ShapeUtil::IsScalar(to_apply.result())) {
    return ShapeUtil::MakeShape(to_apply.result().element_type(),
                                new_dimensions);
  } else {
    std::vector<Shape> result_subshapes;
    for (const Shape& subshape : to_apply.result().tuple_shapes()) {
      result_subshapes.push_back(
          ShapeUtil::MakeShape(subshape.element_type(), new_dimensions));
    }
    return ShapeUtil::MakeTupleShape(result_subshapes);
  }
}

/* static */ StatusOr<Shape> ShapeInference::InferReduceWindowShape(
    const Shape& operand_shape, const Shape& init_value_shape,
    const Window& window, const ProgramShape& to_apply_shape) {
  TF_RETURN_IF_ERROR(ExpectArray(operand_shape, "operand of reduce-window"));
  TF_RETURN_IF_ERROR(VerifyReducerShape(to_apply_shape, {&init_value_shape},
                                        {operand_shape.element_type()},
                                        /*inputs=*/1));
  return InferWindowOutputShape(operand_shape, window,
                                init_value_shape.element_type(),
                                /*allow_negative_padding=*/false);
}

/* static */ StatusOr<Shape> ShapeInference::InferSelectAndScatterShape(
    const Shape& operand_shape, const ProgramShape& select_shape,
    const Window& window, const Shape& source_shape,
    const Shape& init_value_shape, const ProgramShape& scatter_shape) {
  TF_RETURN_IF_ERROR(
      ExpectArray(operand_shape, "operand of select-and-scatter"));

  // Check if the select function has a proper shape of (T,T) -> PRED.
  if (select_shape.parameters_size() != 2) {
    return InvalidArgument(
        "Select function must take 2 parameters, but "
        "takes %d parameter(s).",
        select_shape.parameters_size());
  }
  const Shape& select_result_shape = select_shape.result();
  if (!ShapeUtil::Compatible(select_result_shape,
                             ShapeUtil::MakeShape(PRED, {}))) {
    return InvalidArgument("Select function must have rank-0 PRED result.");
  }
  const Shape& operand_element_shape =
      ShapeUtil::MakeShape(operand_shape.element_type(), {});
  if (!ShapeUtil::CompatibleIgnoringFpPrecision(operand_element_shape,
                                                select_shape.parameters(0))) {
    return InvalidArgument(
        "Select function's first parameter shape currently must "
        "match the operand element shape, but got %s vs %s.",
        ShapeUtil::HumanString(select_shape.parameters(0)),
        ShapeUtil::HumanString(operand_element_shape));
  }
  if (!ShapeUtil::CompatibleIgnoringFpPrecision(operand_element_shape,
                                                select_shape.parameters(1))) {
    return InvalidArgument(
        "Select function's second parameter shape currently must "
        "match the operand element shape, but got %s vs %s.",
        ShapeUtil::HumanString(select_shape.parameters(1)),
        ShapeUtil::HumanString(operand_element_shape));
  }

  // Check if the scatter function has a proper shape as a reduction.
  TF_RETURN_IF_ERROR(VerifyReducerShape(scatter_shape, {&init_value_shape},
                                        {source_shape.element_type()},
                                        /*inputs=*/1));

  // Check if the result shape of window operation matches the source shape.
  TF_ASSIGN_OR_RETURN(const Shape& window_result_shape,
                      InferWindowOutputShape(operand_shape, window,
                                             operand_shape.element_type(),
                                             /*allow_negative_padding=*/false));
  if (!ShapeUtil::CompatibleIgnoringFpPrecision(source_shape,
                                                window_result_shape)) {
    return InvalidArgument(
        "Source shape does not match the shape of window-reduced operand: "
        "source(%s), window-reduced operand(%s).",
        ShapeUtil::HumanString(source_shape),
        ShapeUtil::HumanString(window_result_shape));
  }
  return operand_shape;
}

/* static */ StatusOr<Shape> ShapeInference::InferSliceShape(
    const Shape& arg, absl::Span<const int64> starts,
    absl::Span<const int64> limits, absl::Span<const int64> strides) {
  auto error = [&](const string& message) {
    return InvalidArgument(
        "%s in slice operation; argument shape: %s; starts: {%s}; limits: "
        "{%s}; strides: {%s}.",
        message, ShapeUtil::HumanString(arg), StrJoin(starts, ","),
        StrJoin(limits, ","), StrJoin(strides, ","));
  };
  TF_RETURN_IF_ERROR(ExpectArray(arg, "operand of slice"));
  VLOG(2) << StrFormat("slicing shape %s starts={%s} limits={%s}",
                       ShapeUtil::HumanString(arg), StrJoin(starts, ", "),
                       StrJoin(limits, ", "));

  if (starts.size() != limits.size()) {
    return error(StrFormat("slice start and limit sizes differ: %u vs %u",
                           starts.size(), limits.size()));
  }

  if (starts.size() != strides.size()) {
    return error(StrFormat("slice start and strides sizes differ: %u vs %u",
                           starts.size(), strides.size()));
  }

  if (starts.size() != ShapeUtil::Rank(arg)) {
    return InvalidArgument(
        "Slice index count does not match argument rank: %u vs %d.",
        starts.size(), ShapeUtil::Rank(arg));
  }

  std::vector<int64> sizes;
  for (int64 dimension = 0; dimension < starts.size(); ++dimension) {
    int64 start_index = starts[dimension];
    int64 limit_index = limits[dimension];
    int64 stride = strides[dimension];
    if (start_index < 0) {
      return InvalidArgument("Negative start index to slice: %d.", start_index);
    }
    if (limit_index > arg.dimensions(dimension)) {
      return error(
          StrFormat("limit index (%d) must be less than or equal to dimension "
                    "size (%d)",
                    limit_index, arg.dimensions(dimension)));
    }
    VLOG(2) << StrFormat("starts[%d] = %d", dimension, start_index);
    VLOG(2) << StrFormat("limits[%d] = %d", dimension, limit_index);
    if (start_index > limit_index) {
      return error(
          StrFormat("limit index (%d) must be greater or equal to "
                    "start index (%d) in slice with positive stride",
                    limit_index, start_index));
    }
    if (stride <= 0) {
      return InvalidArgument("Stride (%d) must be positive.", stride);
    }
    sizes.push_back((limit_index - start_index + stride - 1) / stride);
  }

  return ShapeUtil::MakeShape(arg.element_type(), sizes);
}

/* static */ StatusOr<Shape> ShapeInference::InferDynamicSliceShape(
    const Shape& operand_shape, const Shape& start_indices_shape,
    absl::Span<const int64> slice_sizes) {
  TF_RETURN_IF_ERROR(ExpectArray(operand_shape, "operand of dynamic slice"));
  TF_RETURN_IF_ERROR(
      ExpectArray(start_indices_shape, "start indices of dynamic slice"));

  VLOG(2) << StrFormat(
      "slicing shape %s at dynamic start_indices %s with slice_sizes={%s}",
      ShapeUtil::HumanString(operand_shape),
      ShapeUtil::HumanString(start_indices_shape), StrJoin(slice_sizes, ", "));

  if (ShapeUtil::Rank(start_indices_shape) != 1) {
    return InvalidArgument(
        "Dynamic slice start indices of rank %d must be rank1.",
        ShapeUtil::Rank(start_indices_shape));
  }

  if (!ShapeUtil::ElementIsIntegral(start_indices_shape)) {
    return InvalidArgument(
        "Dynamic slice start indices must be of integral type.");
  }

  const int64 start_num_dims = start_indices_shape.dimensions(0);
  if (ShapeUtil::Rank(operand_shape) != start_num_dims) {
    return InvalidArgument(
        "Dynamic slice start number of dimensions %d (%s) must match rank "
        "%d of slice input (%s).",
        start_num_dims, ShapeUtil::HumanString(start_indices_shape),
        ShapeUtil::Rank(operand_shape), ShapeUtil::HumanString(operand_shape));
  }

  if (slice_sizes.size() != ShapeUtil::Rank(operand_shape)) {
    return InvalidArgument(
        "Dynamic slice index count does not match argument rank: %u vs %d.",
        slice_sizes.size(), ShapeUtil::Rank(operand_shape));
  }

  for (int64 dim = 0; dim < slice_sizes.size(); ++dim) {
    const int64 input_dim_size = operand_shape.dimensions(dim);
    const int64 slice_dim_size = slice_sizes[dim];
    if (slice_dim_size < 0) {
      return InvalidArgument("Negative size index to dynamic slice: %d.",
                             slice_dim_size);
    }
    if (slice_dim_size > input_dim_size) {
      return InvalidArgument(
          "Slice dim size %d greater than dynamic slice dimension: %d.",
          slice_dim_size, input_dim_size);
    }
    VLOG(2) << StrFormat("slice_sizes[%d] = %d", dim, slice_dim_size);
  }

  return ShapeUtil::MakeShape(operand_shape.element_type(), slice_sizes);
}

/* static */ StatusOr<Shape> ShapeInference::InferDynamicUpdateSliceShape(
    const Shape& operand_shape, const Shape& update_shape,
    const Shape& start_indices_shape) {
  TF_RETURN_IF_ERROR(
      ExpectArray(operand_shape, "operand of dynamic update slice"));
  TF_RETURN_IF_ERROR(
      ExpectArray(update_shape, "update of dynamic update slice"));
  TF_RETURN_IF_ERROR(ExpectArray(start_indices_shape,
                                 "start indices of dynamic update slice"));

  VLOG(2) << StrFormat(
      "updating slice of shape %s at dynamic start_indices %s with update "
      "shape %s",
      ShapeUtil::HumanString(operand_shape),
      ShapeUtil::HumanString(start_indices_shape),
      ShapeUtil::HumanString(update_shape));

  if (ShapeUtil::Rank(start_indices_shape) != 1) {
    return InvalidArgument(
        "Dynamic update slice start indices of rank %d must be rank1.",
        ShapeUtil::Rank(start_indices_shape));
  }

  if (!ShapeUtil::ElementIsIntegral(start_indices_shape)) {
    return InvalidArgument(
        "Dynamic update slice start indices must be of integral type.");
  }

  const int64 start_num_dims = start_indices_shape.dimensions(0);
  if (ShapeUtil::Rank(operand_shape) != start_num_dims) {
    return InvalidArgument(
        "Dynamic update slice start number of dimensions %d (%s) must match "
        "rank %d of slice input (%s).",
        start_num_dims, ShapeUtil::HumanString(start_indices_shape),
        ShapeUtil::Rank(operand_shape), ShapeUtil::HumanString(operand_shape));
  }

  if (ShapeUtil::Rank(update_shape) != ShapeUtil::Rank(operand_shape)) {
    return InvalidArgument(
        "Dynamic update slice update rank does not match argument rank: "
        "%d vs %d.",
        ShapeUtil::Rank(update_shape), ShapeUtil::Rank(operand_shape));
  }

  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(operand_shape,
                                                     update_shape)) {
    return InvalidArgument(
        "Dynamic update slice update element type does not match argument. "
        "operand.element_type: %s vs update.element_type: %s.",
        PrimitiveType_Name(operand_shape.element_type()),
        PrimitiveType_Name(update_shape.element_type()));
  }

  for (int64 dim = 0; dim < ShapeUtil::Rank(operand_shape); ++dim) {
    const int64 input_dim_size = operand_shape.dimensions(dim);
    const int64 update_dim_size = update_shape.dimensions(dim);
    if (update_dim_size < 0) {
      return InvalidArgument(
          "Size index %d to dynamic update slice must be >= 0.",
          update_dim_size);
    }
    if (update_dim_size > input_dim_size) {
      return InvalidArgument(
          "Update dim size %d greater than dynamic slice dimension: %d.",
          update_dim_size, input_dim_size);
    }
    VLOG(2) << StrFormat("update_sizes[%d] = %d", dim, update_dim_size);
  }

  return operand_shape;
}

/*static */ StatusOr<Shape> ShapeInference::InferReverseShape(
    const Shape& operand_shape, absl::Span<const int64> dimensions) {
  TF_RETURN_IF_ERROR(ExpectArray(operand_shape, "operand of reverse"));
  if (!AllUnique(dimensions)) {
    return InvalidArgument("a dimension number is duplicated in reverse");
  }
  for (int64 dimension : dimensions) {
    if (dimension >= ShapeUtil::Rank(operand_shape) || dimension < 0) {
      return InvalidArgument(
          "One of the reverse dimensions (%d) is out-of-bounds in shape %s.",
          dimension, ShapeUtil::HumanString(operand_shape));
    }
  }
  return operand_shape;
}

/* static */ StatusOr<Shape> ShapeInference::InferGetTupleElementShape(
    const Shape& arg, int64 index) {
  if (!ShapeUtil::IsTuple(arg)) {
    return InvalidArgument(
        "Cannot infer shape: attempting to index into non-tuple: %s.",
        ShapeUtil::HumanString(arg));
  }

  if (index >= arg.tuple_shapes_size()) {
    return InvalidArgument(
        "Cannot infer shape: attempt to index out of tuple bounds: %d "
        ">= %d in shape %s.",
        index, arg.tuple_shapes_size(), ShapeUtil::HumanString(arg));
  }

  return arg.tuple_shapes(index);
}

/* static */ StatusOr<Shape> ShapeInference::InferWhileShape(
    const ProgramShape& condition, const ProgramShape& body,
    const Shape& init) {
  // Check the number of parameters for given computations.
  if (condition.parameters_size() != 1) {
    return InvalidArgument("Condition must take 1 arguments; got %d.",
                           condition.parameters_size());
  }
  if (body.parameters_size() != 1) {
    return InvalidArgument("Body must take 1 arguments; got %d.",
                           body.parameters_size());
  }

  auto shape_string = [&]() {
    return StrFormat(
        "Condition: %s; body: %s; init: %s.", ShapeUtil::HumanString(condition),
        ShapeUtil::HumanString(body), ShapeUtil::HumanString(init));
  };

  // Check the shapes of computation parameters and return types.
  if (!ShapeUtil::ShapeIs(condition.result(), PRED, {})) {
    return InvalidArgument("Condition must return a boolean; got %s.",
                           shape_string());
  }
  if (!ShapeUtil::Compatible(body.result(), condition.parameters(0)) ||
      !ShapeUtil::Compatible(body.result(), body.parameters(0)) ||
      !ShapeUtil::Compatible(body.result(), init)) {
    return InvalidArgument(
        "The parameter of condition and body, the result of the body, and init "
        "must all have the same shape; got %s.",
        shape_string());
  }

  return init;
}

/* static */ StatusOr<Shape> ShapeInference::InferConditionalShape(
    const Shape& predicate, const Shape& true_operand,
    const Shape& false_operand, const ProgramShape& true_computation,
    const ProgramShape& false_computation) {
  if (!ShapeUtil::ShapeIs(predicate, PRED, {})) {
    return InvalidArgument("Predicate must be a boolean; got %s.",
                           ShapeUtil::HumanString(predicate));
  }

  if (true_computation.parameters_size() != 1) {
    return InvalidArgument("true_computation must take 1 argument; got %d.",
                           true_computation.parameters_size());
  }
  if (!ShapeUtil::Compatible(true_computation.parameters(0), true_operand)) {
    auto true_shape_string = [&]() {
      return StrFormat("true_operand: %s; true_computation: %s",
                       ShapeUtil::HumanString(true_operand),
                       ShapeUtil::HumanString(true_computation));
    };
    return InvalidArgument(
        "true_operand must match the shape of the only parameter of "
        "true_computation: got %s.",
        true_shape_string());
  }

  if (false_computation.parameters_size() != 1) {
    return InvalidArgument("false_computation must take 1 argument; got %d.",
                           false_computation.parameters_size());
  }
  if (!ShapeUtil::Compatible(false_computation.parameters(0), false_operand)) {
    auto false_shape_string = [&]() {
      return StrFormat("false_operand: %s; false_computation: %s",
                       ShapeUtil::HumanString(false_operand),
                       ShapeUtil::HumanString(false_computation));
    };
    return InvalidArgument(
        "false_operand must match the shape of the only parameter of "
        "false_computation: got %s.",
        false_shape_string());
  }
  if (!ShapeUtil::Compatible(true_computation.result(),
                             false_computation.result())) {
    auto shape_string = [&]() {
      return StrFormat(
          "true_computation result: %s; false_computation result: %s.",
          ShapeUtil::HumanString(true_computation.result()),
          ShapeUtil::HumanString(false_computation.result()));
    };
    return InvalidArgument(
        "the result of true_computation and false_computation must have the "
        "same shape: got %s.",
        shape_string());
  }
  return true_computation.result();
}

/* static */ StatusOr<Shape> ShapeInference::InferBroadcastShape(
    const Shape& operand, absl::Span<const int64> broadcast_sizes) {
  TF_RETURN_IF_ERROR(ExpectArray(operand, "operand of broadcast"));
  for (int64 size : broadcast_sizes) {
    if (size < 0) {
      return InvalidArgument("Broadcast with negative dimension size %d.",
                             size);
    }
  }

  std::vector<int64> dimensions(operand.dimensions_size() +
                                broadcast_sizes.size());
  std::copy(broadcast_sizes.begin(), broadcast_sizes.end(), dimensions.begin());
  std::copy(operand.dimensions().begin(), operand.dimensions().end(),
            dimensions.begin() + broadcast_sizes.size());
  return ShapeUtil::MakeShape(operand.element_type(), dimensions);
}

/* static */ StatusOr<Shape> ShapeInference::InferReshapeShape(
    const Shape& operand, absl::Span<const int64> dimensions,
    absl::Span<const int64> new_sizes) {
  TF_RETURN_IF_ERROR(ExpectArray(operand, "reshape"));

  Shape inferred_shape =
      ShapeUtil::MakeShape(operand.element_type(), new_sizes);
  VLOG(3) << "Reshape inferred shape: "
          << ShapeUtil::HumanString(inferred_shape);

  if (ShapeUtil::ElementsIn(operand) != ShapeUtil::ElementsIn(inferred_shape)) {
    return InvalidArgument(
        "Reshape operation has mismatched element counts: from=%d (%s) "
        "to=%d (%s).",
        ShapeUtil::ElementsIn(operand), ShapeUtil::HumanString(operand),
        ShapeUtil::ElementsIn(inferred_shape),
        ShapeUtil::HumanString(inferred_shape));
  }

  std::vector<int64> indices(ShapeUtil::Rank(operand));
  std::iota(indices.begin(), indices.end(), 0);
  if (dimensions.size() != ShapeUtil::Rank(operand) ||
      !std::is_permutation(dimensions.begin(), dimensions.end(),
                           indices.begin())) {
    return InvalidArgument(
        "Reshape dimensions [%s] are not a permutation of the operand "
        "dimensions (operand shape is %s).",
        StrJoin(dimensions, ","), ShapeUtil::HumanString(operand));
  }

  return inferred_shape;
}

/* static */ StatusOr<Shape> ShapeInference::InferTransposeShape(
    const Shape& operand, absl::Span<const int64> dimensions) {
  TF_RETURN_IF_ERROR(ExpectArray(operand, "transpose"));

  std::vector<int64> indices(ShapeUtil::Rank(operand));
  std::iota(indices.begin(), indices.end(), 0);
  if (dimensions.size() != ShapeUtil::Rank(operand) ||
      !std::is_permutation(dimensions.begin(), dimensions.end(),
                           indices.begin())) {
    return InvalidArgument(
        "Transpose dimensions [%s] are not a permutation of the operand "
        "dimensions (operand shape is %s).",
        StrJoin(dimensions, ","), ShapeUtil::HumanString(operand));
  }

  // Permute(dimensions,input) computes output[dimensions[i]]=input[i]. However,
  // we need output[i]=input[dimensions[i]] which is
  // Permute(Inverse(dimensions),input).
  return ShapeUtil::PermuteDimensions(InversePermutation(dimensions), operand);
}

// TODO(b/36794510): Make broadcast semantics more consistent, by supporting
// "degenerate" cases, as with binary elementwise ops.
/* static */ StatusOr<Shape> ShapeInference::InferClampShape(
    const Shape& min, const Shape& operand, const Shape& max) {
  TF_RETURN_IF_ERROR(ExpectArray(min, "clamp min"));
  TF_RETURN_IF_ERROR(ExpectArray(operand, "clamp operand"));
  TF_RETURN_IF_ERROR(ExpectArray(max, "clamp max"));
  if (!ShapeUtil::SameElementTypeIgnoringFpPrecision(min, operand) ||
      !ShapeUtil::SameElementTypeIgnoringFpPrecision(max, operand)) {
    return InvalidArgument("Clamp with different operand types: %s, %s, %s.",
                           ShapeUtil::HumanString(min),
                           ShapeUtil::HumanString(operand),
                           ShapeUtil::HumanString(max));
  }
  if (((ShapeUtil::CompatibleIgnoringFpPrecision(min, operand) ||
        ShapeUtil::IsScalar(min)) &&
       (ShapeUtil::CompatibleIgnoringFpPrecision(max, operand) ||
        ShapeUtil::IsScalar(max)))) {
    return operand;
  }
  if (ShapeUtil::IsScalar(operand)) {
    if (ShapeUtil::CompatibleIgnoringFpPrecision(min, max)) {
      return ShapeUtil::ChangeElementType(min, operand.element_type());
    } else if (ShapeUtil::IsScalar(min)) {
      return ShapeUtil::ChangeElementType(max, operand.element_type());
    } else if (ShapeUtil::IsScalar(max)) {
      return ShapeUtil::ChangeElementType(min, operand.element_type());
    }
  }
  return Unimplemented("%s, %s <clamp> %s is not implemented.",
                       min.ShortDebugString(), max.ShortDebugString(),
                       operand.ShortDebugString());
}

// TODO(b/36794510): Make broadcast semantics more consistent, by supporting
// "degenerate" cases, as with binary elementwise ops, as well as scalar
// broadcast from all operands, not just the predicate.
/* static */ StatusOr<Shape> ShapeInference::InferSelectShape(
    const Shape& pred, const Shape& on_true, const Shape& on_false) {
  if (!ShapeUtil::CompatibleIgnoringFpPrecision(on_true, on_false)) {
    return InvalidArgument(
        "Operands to select must be the same shape; got %s and %s.",
        ShapeUtil::HumanString(on_true), ShapeUtil::HumanString(on_false));
  }
  if (pred.element_type() != PRED) {
    return InvalidArgument(
        "Select's pred operand must have PRED element type; got %s.",
        ShapeUtil::HumanString(pred));
  }
  if (ShapeUtil::CompatibleIgnoringElementType(pred, on_true) ||
      ShapeUtil::IsScalar(pred)) {
    // By this stage we know that pred's element type is PRED. Therefore, this
    // check restricts pred to be a PRED scalar, or a PRED array with the same
    // dimensions as on_true and on_false.
    return ShapeUtil::ChangeElementType(
        on_true, ShapeUtil::HigherPrecisionElementType(on_true, on_false));
  } else {
    return InvalidArgument(
        "Select operation with non-scalar predicate with dimensionality "
        " different from the other operands: %s.",
        ShapeUtil::HumanString(pred));
  }
}

/* static */ StatusOr<Shape> ShapeInference::InferTupleSelectShape(
    const Shape& pred, const Shape& on_true, const Shape& on_false) {
  // Select only defines the top-level buffer, so if it's a tuple, the two
  // input must match exactly.
  if (!ShapeUtil::Compatible(on_true, on_false)) {
    return InvalidArgument(
        "Operands to tuple-select must be the same shape; got %s and %s.",
        ShapeUtil::HumanString(on_true), ShapeUtil::HumanString(on_false));
  }
  if (pred.element_type() != PRED) {
    return InvalidArgument(
        "TupleSelect's pred operand must have PRED element type; got %s.",
        ShapeUtil::HumanString(pred));
  }
  if (!ShapeUtil::IsScalar(pred)) {
    return InvalidArgument(
        "TupleSelect operation with non-scalar predicate: %s.",
        ShapeUtil::HumanString(pred));
  }
  return on_true;
}

/* static */ StatusOr<Shape> ShapeInference::InferCallShape(
    absl::Span<const Shape* const> arg_shapes, const ProgramShape& to_apply) {
  // The applied function's arity equals the number of arguments.
  if (arg_shapes.size() != to_apply.parameters_size()) {
    string computation_signature = ShapeUtil::HumanString(to_apply);
    string argument_shapes =
        StrJoin(arg_shapes, ", ", [](string* out, const Shape* shape) {
          absl::StrAppend(out, ShapeUtil::HumanString(*shape));
        });
    return InvalidArgument(
        "Call applied function arity must match number of arguments; got: "
        "arity: %d, arguments: %u; computation signature: %s; argument "
        "shapes: [%s].",
        to_apply.parameters_size(), arg_shapes.size(), computation_signature,
        argument_shapes);
  }

  // All arguments must be compatible with the program shape.
  for (int i = 0; i < arg_shapes.size(); ++i) {
    const Shape& arg_shape = *arg_shapes[i];
    const Shape& param_shape = to_apply.parameters(i);
    if (!ShapeUtil::Compatible(arg_shape, param_shape)) {
      return InvalidArgument(
          "Call parameter must match argument; got parameter %d shape: %s, "
          "argument shape: %s.",
          i, ShapeUtil::HumanString(param_shape),
          ShapeUtil::HumanString(arg_shape));
    }
  }

  return to_apply.result();
}

static Status ValidateGatherDimensionNumbers(
    const Shape& input_shape, absl::Span<const int64> start_indices_shape,
    const GatherDimensionNumbers& dim_numbers) {
  if (!absl::c_is_sorted(dim_numbers.offset_dims())) {
    return InvalidArgument(
        "Output window dimensions in gather op must be ascending; got: %s.",
        StrJoin(dim_numbers.offset_dims(), ", "));
  }

  if (absl::c_adjacent_find(dim_numbers.offset_dims()) !=
      dim_numbers.offset_dims().end()) {
    return InvalidArgument(
        "Output window dimensions in gather op must not repeat; got: %s.",
        StrJoin(dim_numbers.offset_dims(), ", "));
  }

  const int64 output_offset_dim_count = dim_numbers.offset_dims_size();
  const int64 output_shape_rank =
      output_offset_dim_count + start_indices_shape.size() - 1;

  for (int i = 0; i < dim_numbers.offset_dims_size(); ++i) {
    int64 offset_dim = dim_numbers.offset_dims(i);
    if (offset_dim < 0 || offset_dim >= output_shape_rank) {
      return InvalidArgument(
          "Offset dimension %d in gather op is out of bounds; got %d, but "
          "should "
          "have been in [0,%d).",
          i, offset_dim, output_shape_rank);
    }
  }

  if (dim_numbers.start_index_map_size() !=
      start_indices_shape[dim_numbers.index_vector_dim()]) {
    return InvalidArgument(
        "Gather op has %d elements in start_index_map and the "
        "bound of dimension index_vector_dim=%d of start_indices is "
        "%d. These two numbers must be equal.",
        dim_numbers.start_index_map_size(), dim_numbers.index_vector_dim(),
        start_indices_shape[dim_numbers.index_vector_dim()]);
  }

  for (int i = 0; i < dim_numbers.start_index_map_size(); i++) {
    int64 operand_dim_for_start_index_i = dim_numbers.start_index_map(i);
    if (operand_dim_for_start_index_i < 0 ||
        operand_dim_for_start_index_i >= input_shape.dimensions_size()) {
      return InvalidArgument(
          "Invalid start_index_map; domain is [0, %d), got: %d->%d.",
          input_shape.dimensions_size(), i, operand_dim_for_start_index_i);
    }
  }

  std::vector<int64> sorted_start_index_map(
      dim_numbers.start_index_map().begin(),
      dim_numbers.start_index_map().end());

  absl::c_sort(sorted_start_index_map);

  if (absl::c_adjacent_find(sorted_start_index_map) !=
      sorted_start_index_map.end()) {
    return InvalidArgument(
        "Repeated dimensions are not allowed in start_index_map; "
        "got: %s.",
        StrJoin(dim_numbers.start_index_map(), ", "));
  }

  for (int64 collapsed_dim : dim_numbers.collapsed_slice_dims()) {
    if (collapsed_dim < 0 || collapsed_dim >= input_shape.dimensions_size()) {
      return InvalidArgument(
          "Invalid collapsed_slice_dims set in gather op; valid range is [0, "
          "%d), got: %d.",
          input_shape.dimensions_size(), collapsed_dim);
    }
  }

  if (!absl::c_is_sorted(dim_numbers.collapsed_slice_dims())) {
    return InvalidArgument(
        "collapsed_slice_dims in gather op must be sorted; got: %s",
        StrJoin(dim_numbers.collapsed_slice_dims(), ", "));
  }

  if (absl::c_adjacent_find(dim_numbers.collapsed_slice_dims()) !=
      dim_numbers.collapsed_slice_dims().end()) {
    return InvalidArgument(
        "Repeated dimensions not allowed in collapsed_slice_dims in gather op; "
        "got: %s.",
        StrJoin(dim_numbers.collapsed_slice_dims(), ", "));
  }

  return Status::OK();
}

/*static*/ StatusOr<Shape> ShapeInference::InferGatherShape(
    const Shape& input_shape, const Shape& start_indices_shape,
    const GatherDimensionNumbers& gather_dim_numbers,
    absl::Span<const int64> slice_sizes) {
  TF_RETURN_IF_ERROR(
      ExpectArray(input_shape, "input tensor operand gather op"));
  TF_RETURN_IF_ERROR(
      ExpectArray(start_indices_shape, "gather indices operand of gather op"));

  if (!ShapeUtil::ElementIsIntegral(start_indices_shape)) {
    return InvalidArgument(
        "Gather indices parameter must be an integral tensor; got %s.",
        ShapeUtil::HumanString(start_indices_shape));
  }

  // We implicitly reshape gather indices of shape P[A,B,C] to P[A,B,C,1] if
  // index_vector_dim is rank(P).  The bounds of this expanded shape is
  // stored in expanded_start_indices_shape.

  if (start_indices_shape.dimensions_size() <
          gather_dim_numbers.index_vector_dim() ||
      gather_dim_numbers.index_vector_dim() < 0) {
    return InvalidArgument(
        "Gather index leaf dimension must be within [0, rank(start_indices) + "
        "1). rank(start_indices) is %d and gather index leaf dimension is "
        "%d.",
        start_indices_shape.dimensions_size(),
        gather_dim_numbers.index_vector_dim());
  }

  std::vector<int64> expanded_start_indices_shape;
  expanded_start_indices_shape.reserve(start_indices_shape.dimensions_size());
  absl::c_copy(start_indices_shape.dimensions(),
               std::back_inserter(expanded_start_indices_shape));
  if (expanded_start_indices_shape.size() ==
      gather_dim_numbers.index_vector_dim()) {
    expanded_start_indices_shape.push_back(1);
  }

  TF_RETURN_IF_ERROR(ValidateGatherDimensionNumbers(
      input_shape, expanded_start_indices_shape, gather_dim_numbers));

  if (slice_sizes.size() != input_shape.dimensions_size()) {
    return InvalidArgument(
        "Gather op must have one slice size for every input dimension; got: "
        "len(slice_sizes)=%lu, input_shape.rank=%d.",
        slice_sizes.size(), input_shape.dimensions_size());
  }

  if (slice_sizes.size() !=
      gather_dim_numbers.offset_dims_size() +
          gather_dim_numbers.collapsed_slice_dims_size()) {
    return InvalidArgument(
        "All components of the offset index in a gather op must either be a "
        "offset dimension or explicitly collapsed; got len(slice_sizes)=%lu, "
        "output_slice_sizes=%s, collapsed_slice_dims=%s.",
        slice_sizes.size(), StrJoin(gather_dim_numbers.offset_dims(), ","),
        StrJoin(gather_dim_numbers.collapsed_slice_dims(), ","));
  }

  for (int i = 0; i < slice_sizes.size(); i++) {
    int64 slice_size = slice_sizes[i];
    int64 corresponding_input_size = input_shape.dimensions(i);
    if (slice_size < 0 || slice_size > corresponding_input_size) {
      return InvalidArgument(
          "Slice size at index %d in gather op is out of range, must be "
          "within [0, %d), got %d.",
          i, corresponding_input_size + 1, slice_size);
    }
  }

  for (int i = 0; i < gather_dim_numbers.collapsed_slice_dims_size(); i++) {
    if (slice_sizes[gather_dim_numbers.collapsed_slice_dims(i)] != 1) {
      return InvalidArgument(
          "Gather op can only collapse slice dims with bound 1, but bound is "
          "%d for index %d at position %d.",
          slice_sizes[gather_dim_numbers.collapsed_slice_dims(i)],
          gather_dim_numbers.collapsed_slice_dims(i), i);
    }
  }

  int64 result_rank = gather_dim_numbers.offset_dims_size() +
                      (expanded_start_indices_shape.size() - 1);
  int64 offset_dims_seen = 0;
  int64 gather_dims_seen = 0;
  std::vector<int64> output_dim_bounds;
  output_dim_bounds.reserve(result_rank);
  for (int64 i = 0; i < result_rank; i++) {
    int64 current_bound;
    bool is_window_index =
        absl::c_binary_search(gather_dim_numbers.offset_dims(), i);
    if (is_window_index) {
      while (absl::c_binary_search(gather_dim_numbers.collapsed_slice_dims(),
                                   offset_dims_seen)) {
        offset_dims_seen++;
      }
      current_bound = slice_sizes[offset_dims_seen++];
    } else {
      if (gather_dims_seen == gather_dim_numbers.index_vector_dim()) {
        gather_dims_seen++;
      }
      current_bound = expanded_start_indices_shape[gather_dims_seen++];
    }

    output_dim_bounds.push_back(current_bound);
  }

  return ShapeUtil::MakeShape(input_shape.element_type(), output_dim_bounds);
}

namespace {

Status ValidateScatterDimensionNumbers(
    const Shape& operand_shape, absl::Span<const int64> scatter_indices_shape,
    const Shape& updates_shape, const ScatterDimensionNumbers& dim_numbers) {
  // Validate update_window_dims in ScatterDimensionNumbers.
  if (!absl::c_is_sorted(dim_numbers.update_window_dims())) {
    return InvalidArgument(
        "update_window_dims in scatter op must be sorted; got: %s.",
        StrJoin(dim_numbers.update_window_dims(), ", "));
  }
  if (absl::c_adjacent_find(dim_numbers.update_window_dims()) !=
      dim_numbers.update_window_dims().end()) {
    return InvalidArgument(
        "update_window_dims in scatter op must not repeat; got: %s.",
        StrJoin(dim_numbers.update_window_dims(), ", "));
  }
  const int64 updates_rank = ShapeUtil::Rank(updates_shape);
  for (int64 window_dim : dim_numbers.update_window_dims()) {
    if (window_dim < 0 || window_dim >= updates_rank) {
      return InvalidArgument(
          "Invalid update_window_dims set in scatter op; valid range is [0, "
          "%d). got: %d.",
          updates_rank, window_dim);
    }
  }

  // Validate inserted_window_dims in ScatterDimensionNumbers.
  if (!absl::c_is_sorted(dim_numbers.inserted_window_dims())) {
    return InvalidArgument(
        "inserted_window_dims in scatter op must be sorted; got: %s.",
        StrJoin(dim_numbers.inserted_window_dims(), ", "));
  }
  if (absl::c_adjacent_find(dim_numbers.inserted_window_dims()) !=
      dim_numbers.inserted_window_dims().end()) {
    return InvalidArgument(
        "inserted_window_dims in scatter op must not repeat; got: %s.",
        StrJoin(dim_numbers.inserted_window_dims(), ", "));
  }
  for (int64 inserted_dim : dim_numbers.inserted_window_dims()) {
    if (inserted_dim < 0 || inserted_dim >= operand_shape.dimensions_size()) {
      return InvalidArgument(
          "Invalid inserted_window_dims set in scatter op; valid range is [0, "
          "%d), got: %d.",
          operand_shape.dimensions_size(), inserted_dim);
    }
  }

  // Validate scatter_dims_to_operand_dims in ScatterDimensionNumbers.
  if (dim_numbers.scatter_dims_to_operand_dims_size() !=
      scatter_indices_shape[dim_numbers.index_vector_dim()]) {
    return InvalidArgument(
        "Scatter op has %d elements in scatter_dims_to_operand_dims and the "
        "bound of dimension index_vector_dim=%d of scatter_indices is %d. "
        "These two numbers must be equal.",
        dim_numbers.scatter_dims_to_operand_dims_size(),
        dim_numbers.index_vector_dim(),
        scatter_indices_shape[dim_numbers.index_vector_dim()]);
  }
  for (int i = 0; i < dim_numbers.scatter_dims_to_operand_dims_size(); ++i) {
    int64 scatter_dim_to_operand_dim =
        dim_numbers.scatter_dims_to_operand_dims(i);
    if (scatter_dim_to_operand_dim < 0 ||
        scatter_dim_to_operand_dim >= operand_shape.dimensions_size()) {
      return InvalidArgument(
          "Invalid scatter_dims_to_operand_dims mapping; domain is [0, %d), "
          "got: %d->%d.",
          operand_shape.dimensions_size(), i, scatter_dim_to_operand_dim);
    }
  }
  std::vector<int64> sorted_scatter_dims_to_operand_dims(
      dim_numbers.scatter_dims_to_operand_dims().begin(),
      dim_numbers.scatter_dims_to_operand_dims().end());
  absl::c_sort(sorted_scatter_dims_to_operand_dims);
  if (absl::c_adjacent_find(sorted_scatter_dims_to_operand_dims) !=
      sorted_scatter_dims_to_operand_dims.end()) {
    return InvalidArgument(
        "Repeated dimensions not allowed in scatter_dims_to_operand_dims; "
        "got: %s.",
        StrJoin(dim_numbers.scatter_dims_to_operand_dims(), ", "));
  }

  return Status::OK();
}

}  // namespace

/*static*/ StatusOr<Shape> ShapeInference::InferScatterShape(
    const Shape& operand_shape, const Shape& scatter_indices_shape,
    const Shape& updates_shape, const ProgramShape& to_apply_shape,
    const ScatterDimensionNumbers& scatter_dim_numbers) {
  TF_RETURN_IF_ERROR(
      ExpectArray(operand_shape, "operand tensor of scatter op"));
  TF_RETURN_IF_ERROR(
      ExpectArray(scatter_indices_shape, "scatter indices of scatter op"));
  TF_RETURN_IF_ERROR(ExpectArray(updates_shape, "updates of scatter op"));

  if (!ShapeUtil::ElementIsIntegral(scatter_indices_shape)) {
    return InvalidArgument(
        "Scatter indices parameter must be an integral tensor; got %s.",
        ShapeUtil::HumanString(scatter_indices_shape));
  }

  if (scatter_indices_shape.dimensions_size() <
          scatter_dim_numbers.index_vector_dim() ||
      scatter_dim_numbers.index_vector_dim() < 0) {
    return InvalidArgument(
        "Scatter index leaf dimension must be within [0, rank(scatter_indices)"
        " + 1). rank(scatter_indices) is %d and scatter index leaf dimension "
        "is %d.",
        scatter_indices_shape.dimensions_size(),
        scatter_dim_numbers.index_vector_dim());
  }

  // Check if the update computation has a proper shape as a reduction.
  const Shape init_value_shape =
      ShapeUtil::MakeShape(operand_shape.element_type(), {});
  TF_RETURN_IF_ERROR(VerifyReducerShape(to_apply_shape, {&init_value_shape},
                                        {updates_shape.element_type()},
                                        /*inputs=*/1));

  std::vector<int64> expanded_scatter_indices_shape =
      ArraySliceToVector(AsInt64Slice(scatter_indices_shape.dimensions()));
  if (expanded_scatter_indices_shape.size() ==
      scatter_dim_numbers.index_vector_dim()) {
    expanded_scatter_indices_shape.push_back(1);
  }

  int64 expected_updates_rank = expanded_scatter_indices_shape.size() - 1 +
                                scatter_dim_numbers.update_window_dims_size();
  if (ShapeUtil::Rank(updates_shape) != expected_updates_rank) {
    return InvalidArgument("Updates tensor must be of rank %d; got %d.",
                           expected_updates_rank,
                           ShapeUtil::Rank(updates_shape));
  }

  TF_RETURN_IF_ERROR(ValidateScatterDimensionNumbers(
      operand_shape, expanded_scatter_indices_shape, updates_shape,
      scatter_dim_numbers));

  int64 inserted_dims_seen = 0;
  std::vector<int64> max_update_slice_sizes;
  for (int i = 0; i < operand_shape.dimensions_size(); ++i) {
    if (inserted_dims_seen < scatter_dim_numbers.inserted_window_dims_size() &&
        scatter_dim_numbers.inserted_window_dims(inserted_dims_seen) == i) {
      ++inserted_dims_seen;
    } else {
      max_update_slice_sizes.push_back(operand_shape.dimensions(i));
    }
  }
  for (int i = 0; i < scatter_dim_numbers.update_window_dims_size(); ++i) {
    auto update_window_dim = scatter_dim_numbers.update_window_dims(i);
    if (updates_shape.dimensions(update_window_dim) >
        max_update_slice_sizes[i]) {
      return InvalidArgument(
          "Bounds of the window dimensions of updates must not exceed the "
          "bounds of the corresponding dimensions of operand. For dimension "
          "%d, updates bound is %d, operand bound is %d.",
          update_window_dim, updates_shape.dimensions(update_window_dim),
          max_update_slice_sizes[i]);
    }
  }

  int64 scatter_dims_seen = 0;
  for (int64 i = 0; i < ShapeUtil::Rank(updates_shape); ++i) {
    bool is_update_window_dim =
        absl::c_binary_search(scatter_dim_numbers.update_window_dims(), i);
    if (is_update_window_dim) {
      continue;
    }
    if (scatter_dims_seen == scatter_dim_numbers.index_vector_dim()) {
      ++scatter_dims_seen;
    }
    if (updates_shape.dimensions(i) !=
        expanded_scatter_indices_shape[scatter_dims_seen]) {
      return InvalidArgument(
          "Bounds of the scatter dimensions of updates must be same as the "
          "bounds of the corresponding dimensions of scatter indices. For "
          "scatter dimension %d, updates bound is %d, scatter_indices "
          "bound is %d.",
          i, updates_shape.dimensions(i),
          expanded_scatter_indices_shape[scatter_dims_seen]);
    }
    ++scatter_dims_seen;
  }

  return operand_shape;
}

}  // namespace xla