aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/llvm_ir/ir_array.cc
blob: ea10cef49a4a9aa048b3e0ea443f052645c4912a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/llvm_ir/ir_array.h"

#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "tensorflow/compiler/xla/layout_util.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"

namespace xla {
namespace llvm_ir {

void IrArray::Index::Delinearize(std::vector<llvm::Value*>* multidim,
                                 llvm::Value* linear, const Shape& shape,
                                 llvm::IRBuilder<>* ir_builder) const {
  int64 divisor = 1;
  const Layout& layout = shape.layout();
  for (int64 i = 0; i < layout.minor_to_major_size(); ++i) {
    int64 dimension = layout.minor_to_major(i);
    int64 size_of_current_dimension = shape.dimensions(dimension);

    // If i is not the last dimension, compute
    //   (linear_index / divisor) % current_dimension.
    // If i is the last dimension, we can skip the mod, because we assume that
    // linear is in bounds.
    //
    // TODO(jlebar): We could add bounds checks here and elsewhere in this file,
    // guarded under some sort of xla-memcheck flag.  This might be particularly
    // useful because cuda-memcheck can't help us much in XLA: Most of our
    // memory lives in one big allocation, so cuda-memcheck can't detect
    // out-of-bounds accesses.
    auto* quot =
        ir_builder->CreateUDiv(linear, GetConstantWithIndexType(divisor));
    if (i < layout.minor_to_major_size() - 1) {
      (*multidim)[dimension] = ir_builder->CreateURem(
          quot, GetConstantWithIndexType(size_of_current_dimension));
    } else {
      (*multidim)[dimension] = quot;
    }
    divisor *= size_of_current_dimension;
  }
}

IrArray::Index::Index(llvm::Value* linear, const Shape& shape,
                      llvm::IRBuilder<>* ir_builder)
    : multidim_(ShapeUtil::Rank(shape)),
      linear_(linear),
      layout_(shape.layout()),
      dims_(shape.dimensions().begin(), shape.dimensions().end()) {
  CHECK_NE(linear, nullptr);
  index_type_ = linear->getType();
  CHECK(LayoutUtil::HasLayout(shape))
      << "Shape " << ShapeUtil::HumanStringWithLayout(shape)
      << " should have a layout.";
  Delinearize(&multidim_, linear, shape, ir_builder);
}

IrArray::Index::Index(tensorflow::gtl::ArraySlice<llvm::Value*> multidim,
                      llvm::Value* linear, const Shape& shape)
    : multidim_(multidim.begin(), multidim.end()),
      linear_(linear),
      layout_(shape.layout()),
      dims_(shape.dimensions().begin(), shape.dimensions().end()) {
  if (size()) {
    index_type_ = multidim_[0]->getType();
  } else {
    CHECK_NE(linear_, nullptr);
    index_type_ = linear_->getType();
  }
  CHECK_NE(index_type_, nullptr);
  CHECK_EQ(shape.dimensions_size(), multidim.size());
  CHECK(LayoutUtil::HasLayout(shape))
      << "Shape " << ShapeUtil::HumanStringWithLayout(shape)
      << " should have a layout.";
}

IrArray::Index::Index(tensorflow::gtl::ArraySlice<llvm::Value*> multidim,
                      const Shape& shape, llvm::IRBuilder<>* ir_builder)
    : multidim_(multidim.begin(), multidim.end()),
      layout_(shape.layout()),
      dims_(shape.dimensions().begin(), shape.dimensions().end()) {
  CHECK_GT(multidim_.size(), 0);
  index_type_ = multidim[0]->getType();
  CHECK_NE(index_type_, nullptr);
  CHECK_EQ(shape.dimensions_size(), multidim.size());
  CHECK(LayoutUtil::HasLayout(shape));
}

IrArray::IrArray(llvm::Value* base_ptr, const Shape& shape)
    : base_ptr_(base_ptr), shape_(&shape) {
  TF_CHECK_OK(ShapeUtil::ValidateShape(shape));
  CHECK(base_ptr_->getType()->isPointerTy());
  int depth = 0;
  element_type_ =
      llvm::cast<llvm::PointerType>(base_ptr_->getType())->getElementType();
  while (llvm::ArrayType* array_type =
             llvm::dyn_cast<llvm::ArrayType>(element_type_)) {
    element_type_ = array_type->getElementType();
    ++depth;
  }

  if (!ShapeUtil::IsArray(*shape_) || ShapeUtil::IsScalar(*shape_)) {
    DCHECK(depth == 1 || depth == 0) << depth;
  } else {
    DCHECK_EQ(depth, ShapeUtil::Rank(*shape_)) << shape.ShortDebugString();
  }
}

// Returns whether the given linear index is valid on the given shape.
bool IrArray::Index::LinearValidOnShape(const Shape& a) const {
  auto b = ShapeUtil::MakeShape(a.element_type(), dims_);
  *b.mutable_layout() = layout_;
  return linear_ != nullptr &&
         ShapeUtil::ElementsIn(a) == ShapeUtil::ElementsIn(b) &&
         ShapeUtil::ReshapeIsBitcast(a, b);
}

IrArray::Index IrArray::Index::SourceIndexOfReshape(
    const Shape& output_shape, const Shape& input_shape,
    llvm::IRBuilder<>* builder) const {
  const auto& target_index = *this;
  CHECK_EQ(target_index.size(), ShapeUtil::Rank(output_shape));
  std::vector<std::pair<int64, int64>> common_factors =
      CommonFactors(AsInt64Slice(input_shape.dimensions()),
                    AsInt64Slice(output_shape.dimensions()));
  std::vector<llvm::Value*> source_multidim_index(
      ShapeUtil::Rank(input_shape), llvm::UndefValue::get(index_type_));
  // We compute the source indices in each common factor from only the target
  // indices in the same common factor.
  for (ssize_t k = common_factors.size() - 2; k >= 0; --k) {
    llvm::Value* logical_linear_index =
        Index(tensorflow::gtl::ArraySlice<llvm::Value*>(
                  multidim_, common_factors[k].second,
                  common_factors[k + 1].second - common_factors[k].second),
              index_type_)
            .Linearize(
                tensorflow::gtl::ArraySlice<int64>(
                    AsInt64Slice(output_shape.dimensions()),
                    common_factors[k].second,
                    common_factors[k + 1].second - common_factors[k].second),
                builder);
    // Delinearizes logical_linear_index for the source array in row-major
    // collapsed order. The first rank-1 indices are the remainder of the
    // linear index by each dimension size.
    for (int64 i = common_factors[k + 1].first - 1;
         i >= common_factors[k].first; --i) {
      llvm::Value* divisor =
          GetConstantWithIndexType(input_shape.dimensions(i));
      if (input_shape.dimensions(i) == 1) {
        source_multidim_index[i] = GetConstantWithIndexType(0);
      } else if (i == common_factors[k].first) {
        source_multidim_index[i] = logical_linear_index;
      } else {
        source_multidim_index[i] =
            builder->CreateURem(logical_linear_index, divisor);
      }
      logical_linear_index = builder->CreateUDiv(logical_linear_index, divisor);
    }
  }

  if (linear() != nullptr && LayoutUtil::HasLayout(input_shape) &&
      LayoutUtil::HasLayout(output_shape) &&
      ShapeUtil::ReshapeIsBitcast(input_shape, output_shape)) {
    return Index(source_multidim_index, linear(), input_shape);
  }
  return Index(source_multidim_index, index_type_);
}

IrArray::Index IrArray::Index::SourceIndexOfSlice(
    const Shape& shape, tensorflow::gtl::ArraySlice<int64> starts,
    tensorflow::gtl::ArraySlice<int64> strides,
    llvm::IRBuilder<>* builder) const {
  Index source_index(index_type_, multidim_.size());
  for (int i = 0; i < multidim_.size(); ++i) {
    int64 stride = strides[i];
    auto type = multidim_[i]->getType();

    if (stride != 1) {
      source_index[i] = builder->CreateAdd(
          builder->CreateMul(multidim_[i],
                             llvm::ConstantInt::get(type, stride)),
          llvm::ConstantInt::get(type, starts[i]));
    } else {
      source_index[i] = builder->CreateAdd(
          multidim_[i], llvm::ConstantInt::get(type, starts[i]));
    }
  }
  return source_index;
}

IrArray::Index IrArray::Index::SourceIndexOfTranspose(
    const Shape& shape, const Shape& operand_shape,
    tensorflow::gtl::ArraySlice<int64> dimension_mapping,
    llvm::IRBuilder<>* builder) const {
  std::vector<llvm::Value*> operand_multidim_index =
      Permute(dimension_mapping, multidim());

  if (linear() != nullptr && LayoutUtil::HasLayout(operand_shape) &&
      LayoutUtil::HasLayout(shape) &&
      ShapeUtil::TransposeIsBitcast(operand_shape, shape, dimension_mapping)) {
    return Index(operand_multidim_index, linear(), operand_shape);
  }

  return Index(operand_multidim_index);
}

IrArray::Index IrArray::Index::SourceIndexOfBitcast(
    const Shape& shape, const Shape& operand_shape,
    llvm::IRBuilder<>* builder) const {
  CHECK(LayoutUtil::HasLayout(shape) && LayoutUtil::HasLayout(operand_shape));
  // In case the bitcast is just a reshape, we can use SourceIndexOfReshape()
  // instead. This will reuse linear() if possible, so we don't have to build a
  // new 'linear_index'.
  if (ShapeUtil::ReshapeIsBitcast(operand_shape, shape)) {
    return SourceIndexOfReshape(shape, operand_shape, builder);
  }

  // First linearize the index coming from the output of the bitcast. We want
  // the physical index of the element in the buffer. This is like Linearize,
  // but takes the layout into account.
  int64 scale = 1;
  llvm::Value* linear_index = GetConstantWithIndexType(0);
  for (auto dimension : LayoutUtil::MinorToMajor(shape)) {
    linear_index = builder->CreateAdd(
        linear_index,
        builder->CreateMul(multidim_[dimension],
                           GetConstantWithIndexType(scale), "",
                           /*HasNUW=*/true, /*HasNSW=*/true),
        "", /*HasNUW=*/true, /*HasNSW=*/true);
    scale *= shape.dimensions(dimension);
  }

  // Now delinearize it for the input of the bitcast.
  std::vector<llvm::Value*> multi_index(operand_shape.dimensions_size());
  Delinearize(&multi_index, linear_index, operand_shape, builder);

  return Index(multi_index, linear_index, operand_shape);
}

IrArray::Index IrArray::Index::SourceIndexOfBroadcast(
    const Shape& shape, const Shape& operand_shape,
    tensorflow::gtl::ArraySlice<int64> dimension_mapping,
    llvm::IRBuilder<>* builder) const {
  int64 rank = ShapeUtil::Rank(operand_shape);
  std::vector<llvm::Value*> source_index(rank);
  for (int64 i = 0; i < rank; ++i) {
    source_index[i] = multidim_[dimension_mapping[i]];
  }
  if (linear_ == nullptr || !LayoutUtil::HasLayout(operand_shape) ||
      !LayoutUtil::HasLayout(shape)) {
    return Index(source_index, index_type_);
  }
  // High-level idea: we can reuse the linear index if the broadcasted
  // dimensions are contiguous, and this part of the operation is a bitcast.
  // The other dimensions can be masked out with a div and a mod operation.
  std::vector<int64> logical_to_physical =
      LayoutUtil::MakeLogicalToPhysical(shape.layout());
  int64 output_rank = ShapeUtil::Rank(shape);
  // The minimum physical dimension that is broadcasted.
  int64 min_broadcasted_dimension = output_rank;
  // The maximum physical dimension that is broadcasted.
  int64 max_broadcasted_dimension = -1;
  for (int64 i = 0; i < rank; ++i) {
    int64 physical_dim = logical_to_physical[dimension_mapping[i]];
    min_broadcasted_dimension =
        std::min(min_broadcasted_dimension, physical_dim);
    max_broadcasted_dimension =
        std::max(max_broadcasted_dimension, physical_dim);
  }
  bool contiguous_broadcast_dimensions =
      max_broadcasted_dimension - min_broadcasted_dimension == rank - 1;
  if (!contiguous_broadcast_dimensions) {
    return Index(source_index, index_type_);
  }
  // Check if the mapped dimensions are a bitcast.
  std::vector<int64> operand_logical_to_physical =
      LayoutUtil::MakeLogicalToPhysical(operand_shape.layout());
  for (int64 i = 0; i < rank; ++i) {
    if (operand_logical_to_physical[i] !=
        logical_to_physical[dimension_mapping[i]] - min_broadcasted_dimension) {
      return Index(source_index, index_type_);
    }
  }
  llvm::Value* linear = linear_;
  int64 divisor = 1;
  for (int64 i = max_broadcasted_dimension + 1; i < output_rank; ++i) {
    divisor *= shape.dimensions(LayoutUtil::Major(shape.layout(), i));
  }
  if (divisor > 1) {
    linear = builder->CreateUDiv(
        linear,
        IrArray::Index(linear->getType()).GetConstantWithIndexType(divisor));
  }
  if (min_broadcasted_dimension > 0) {
    int64 mod = 1;
    for (int64 i = min_broadcasted_dimension; i <= max_broadcasted_dimension;
         ++i) {
      mod *= shape.dimensions(LayoutUtil::Major(shape.layout(), i));
    }
    linear = builder->CreateURem(
        linear,
        IrArray::Index(linear->getType()).GetConstantWithIndexType(mod));
  }
  return Index(source_index, linear, operand_shape);
}

llvm::Value* IrArray::Index::Linearize(
    tensorflow::gtl::ArraySlice<int64> dimensions,
    llvm::IRBuilder<>* builder) const {
  // Each dimension is multiplied by the product of the sizes of all
  // earlier dimensions and added to the accumulator logical_linear_index.
  llvm::Value* logical_linear_index = GetConstantWithIndexType(0);
  int64 multiplier = 1;
  for (ssize_t i = size() - 1; i >= 0; --i) {
    llvm::Value* addend =
        builder->CreateMul((*this)[i], GetConstantWithIndexType(multiplier), "",
                           /*HasNUW=*/true, /*HasNSW=*/true);
    addend = builder->CreateZExtOrTrunc(addend, index_type_);
    logical_linear_index = builder->CreateAdd(logical_linear_index, addend, "",
                                              /*HasNUW=*/true, /*HasNSW=*/true);
    multiplier *= dimensions[i];
  }
  return logical_linear_index;
}

llvm::Value* IrArray::EmitArrayElementAddress(
    const IrArray::Index& index, llvm::IRBuilder<>* ir_builder,
    tensorflow::StringPiece name) const {
  if (ShapeUtil::IsScalar(*shape_)) {
    // Special handling of scalars: a scalar pretends to have the same value for
    // every index, thus effectively implementing broadcasting of its value
    // over higher-rank arrays.
    return base_ptr_;
  }
  CHECK_EQ(index.size(), ShapeUtil::Rank(*shape_));

  if (index.LinearValidOnShape(*shape_)) {
    llvm::Module* module =
        ir_builder->GetInsertBlock()->getParent()->getParent();
    return ir_builder->CreateInBoundsGEP(
        ir_builder->CreateBitCast(
            base_ptr_, PrimitiveTypeToIrType(shape_->element_type(), module)
                           ->getPointerTo()),
        {index.linear()}, llvm_ir::AsStringRef(name));
  }

  std::vector<llvm::Value*> actual_index;
  for (int64 i = 0; i < index.size(); ++i) {
    // When dimension i is of size 1, LLVM optimization is able to replace
    // index[i] with 0. However, setting index[i] to 0 here still allows LLVM to
    // produce better code in some cases.
    auto dim = shape_->dimensions(i);
    actual_index.push_back(
        dim == 1 ? llvm::ConstantInt::get(index[i]->getType(), 0) : index[i]);
  }

  // "base_ptr_" has the type of "<ir_type_for_its_shape>*"
  // (e.g. [3 x [2 x float]]*). Therefore, the address of the indexed element
  // should be computed by
  //
  //   getelementptr base_ptr_, 0, most major index, ..., most minor index
  CHECK_GT(index.size(), 0);
  std::vector<llvm::Value*> gep_indices(
      1, llvm::ConstantInt::get(index[0]->getType(), 0));
  for (int64 i = 0; i < LayoutUtil::MinorToMajor(*shape_).size(); ++i) {
    int64 dimension = LayoutUtil::Major(shape_->layout(), i);
    gep_indices.push_back(actual_index[dimension]);
  }
  return ir_builder->CreateInBoundsGEP(base_ptr_, gep_indices,
                                       llvm_ir::AsStringRef(name));
}

void IrArray::AnnotateLoadStoreInstructionWithMetadata(
    llvm::Instruction* instruction) const {
  CHECK(llvm::isa<llvm::LoadInst>(instruction) ||
        llvm::isa<llvm::StoreInst>(instruction));
  CHECK(!llvm::isa<llvm::StoreInst>(instruction) || !is_invariant_)
      << "Trying to create a store to an invariant IRArray.";

  for (const auto& kind_md_pair : metadata_) {
    instruction->setMetadata(kind_md_pair.first, kind_md_pair.second);
  }
}

llvm::Value* IrArray::EmitReadArrayElement(const Index& index,
                                           llvm::IRBuilder<>* ir_builder,
                                           tensorflow::StringPiece name) const {
  llvm::Value* element_address =
      EmitArrayElementAddress(index, ir_builder, name);
  llvm::LoadInst* load = ir_builder->CreateLoad(element_address);
  AnnotateLoadStoreInstructionWithMetadata(load);
  return load;
}

void IrArray::EmitWriteArrayElement(const Index& index, llvm::Value* value,
                                    llvm::IRBuilder<>* ir_builder) const {
  llvm::Value* element_address = EmitArrayElementAddress(index, ir_builder);
  llvm::StoreInst* store = ir_builder->CreateStore(value, element_address);
  AnnotateLoadStoreInstructionWithMetadata(store);
}

IrArray IrArray::CastToShape(const Shape& new_shape,
                             llvm::IRBuilder<>* ir_builder) const {
  llvm::Module* module = ir_builder->GetInsertBlock()->getParent()->getParent();
  llvm::Type* new_ir_type = llvm_ir::ShapeToIrType(new_shape, module);
  return IrArray(
      ir_builder->CreatePointerCast(base_ptr_, new_ir_type->getPointerTo()),
      new_shape);
}

/* static */ IrArray::Index IrArray::BumpIndex(const Index& index,
                                               int64 which_dimension,
                                               int64 addend,
                                               llvm::IRBuilder<>* ir_builder) {
  Index new_index = index;
  new_index[which_dimension] = ir_builder->CreateAdd(
      index[which_dimension],
      llvm::ConstantInt::get(index[which_dimension]->getType(), addend), "",
      /*HasNUW=*/true,
      /*HasNSW=*/true);
  return new_index;
}

}  // namespace llvm_ir
}  // namespace xla