aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/instruction_fusion.cc
blob: 69a4c160ee5c4539272c3085338dc6de1b9347ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/instruction_fusion.h"

#include <algorithm>
#include <list>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/algorithm/container.h"
#include "absl/container/flat_hash_map.h"
#include "absl/memory/memory.h"
#include "tensorflow/compiler/xla/map_util.h"
#include "tensorflow/compiler/xla/service/fusion_queue.h"
#include "tensorflow/compiler/xla/service/hlo_opcode.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/platform/logging.h"

namespace xla {
namespace {
// These nodes can always be duplicated into consumers, even if
// InstructionFusion::may_duplicate_ is false.
//
// In general these should be nodes that get *cheaper* the more they're
// duplicated (and fused into consumers).
//
// TODO(jlebar): Duplicating instructions when we have a variable called "may
// duplicate" that's equal to false is not pretty.
bool IsAlwaysDuplicable(const HloInstruction& instruction) {
  // We are always willing to duplicate a widening type-conversion instruction
  // if it means we can fuse the convert into a consumer.  This allows the
  // consumer to read less memory, which is almost always a performance win.
  return instruction.opcode() == HloOpcode::kConvert &&
         ShapeUtil::ByteSizeOf(instruction.operand(0)->shape()) <
             ShapeUtil::ByteSizeOf(instruction.shape());
}
}  // namespace

/*static*/ bool InstructionFusion::IsExpensive(
    const HloInstruction& instruction) {
  switch (instruction.opcode()) {
    // Cheap instructions.
    case HloOpcode::kAdd:
    case HloOpcode::kAnd:
    case HloOpcode::kBitcast:
    case HloOpcode::kBitcastConvert:
    case HloOpcode::kBroadcast:
    case HloOpcode::kCeil:
    case HloOpcode::kClamp:
    case HloOpcode::kClz:
    case HloOpcode::kComplex:
    case HloOpcode::kConcatenate:
    case HloOpcode::kConstant:
    case HloOpcode::kConvert:
    case HloOpcode::kCopy:
    case HloOpcode::kDynamicSlice:
    case HloOpcode::kDynamicUpdateSlice:
    case HloOpcode::kEq:
    case HloOpcode::kFloor:
    case HloOpcode::kGe:
    case HloOpcode::kGetTupleElement:
    case HloOpcode::kGt:
    case HloOpcode::kImag:
    case HloOpcode::kInfeed:
    case HloOpcode::kIota:
    case HloOpcode::kIsFinite:
    case HloOpcode::kLe:
    case HloOpcode::kLt:
    case HloOpcode::kMaximum:
    case HloOpcode::kMinimum:
    case HloOpcode::kMultiply:
    case HloOpcode::kNe:
    case HloOpcode::kNegate:
    case HloOpcode::kNot:
    case HloOpcode::kOr:
    case HloOpcode::kXor:
    case HloOpcode::kOutfeed:
    case HloOpcode::kPad:
    case HloOpcode::kReal:
    case HloOpcode::kReducePrecision:
    case HloOpcode::kReshape:
    case HloOpcode::kReverse:
    case HloOpcode::kRoundNearestAfz:
    case HloOpcode::kSelect:
    case HloOpcode::kShiftLeft:
    case HloOpcode::kShiftRightArithmetic:
    case HloOpcode::kShiftRightLogical:
    case HloOpcode::kSlice:
    case HloOpcode::kSubtract:
    case HloOpcode::kAfterAll:
    case HloOpcode::kTranspose:
    case HloOpcode::kTuple:
    case HloOpcode::kTupleSelect:
      return false;

    // Cheap instructions for reals, but expensive for complex.
    case HloOpcode::kAbs:
    case HloOpcode::kCos:
    case HloOpcode::kSign:
    case HloOpcode::kSin:
      return ShapeUtil::ElementIsComplex(instruction.shape());

    // Expensive instructions.
    case HloOpcode::kAtan2:
    case HloOpcode::kBatchNormGrad:
    case HloOpcode::kBatchNormInference:
    case HloOpcode::kBatchNormTraining:
    case HloOpcode::kCall:
    case HloOpcode::kConditional:
    case HloOpcode::kConvolution:
    case HloOpcode::kCrossReplicaSum:
    case HloOpcode::kAllToAll:
    case HloOpcode::kCollectivePermute:
    case HloOpcode::kCustomCall:
    case HloOpcode::kDivide:
    case HloOpcode::kDomain:
    case HloOpcode::kDot:
    case HloOpcode::kExp:
    case HloOpcode::kExpm1:
    case HloOpcode::kFft:
    case HloOpcode::kFusion:
    case HloOpcode::kGather:
    case HloOpcode::kLog:
    case HloOpcode::kLog1p:
    case HloOpcode::kMap:
    case HloOpcode::kParameter:
    case HloOpcode::kPower:
    case HloOpcode::kRecv:
    case HloOpcode::kRecvDone:
    case HloOpcode::kReduce:
    case HloOpcode::kReduceWindow:
    case HloOpcode::kRemainder:
    case HloOpcode::kRng:
    case HloOpcode::kScatter:
    case HloOpcode::kSelectAndScatter:
    case HloOpcode::kSend:
    case HloOpcode::kSendDone:
    case HloOpcode::kSort:
    case HloOpcode::kTanh:
    case HloOpcode::kTrace:
    case HloOpcode::kWhile:
      return true;
  }

  return false;
}

// An "effectively at most unary" operation is one that has at most one "large"
// input with the others being negligible in terms of memory usage.
// We use "has a smaller true rank than the output" as a heuristic
// for "negligible" memory usage.
bool InstructionFusion::EffectivelyAtMostUnary(HloInstruction* hlo) {
  int64 output_rank = 0;
  ShapeUtil::ForEachSubshape(
      hlo->shape(),
      [&output_rank](const Shape& subshape, const ShapeIndex& shape_index) {
        if (ShapeUtil::IsArray(subshape)) {
          output_rank = std::max(output_rank, ShapeUtil::TrueRank(subshape));
        }
      });
  return std::count_if(hlo->operands().begin(), hlo->operands().end(),
                       [output_rank](HloInstruction* operand) {
                         if (operand->opcode() == HloOpcode::kBroadcast ||
                             operand->opcode() == HloOpcode::kIota) {
                           return false;
                         }
                         if (operand->opcode() == HloOpcode::kConstant &&
                             ShapeUtil::IsEffectiveScalar(operand->shape())) {
                           return false;
                         }
                         return ShapeUtil::TrueRank(operand->shape()) >=
                                output_rank;
                       }) <= 1;
}

bool InstructionFusion::CanFuseOnAllPaths(
    HloInstruction* producer, HloInstruction* consumer,
    const HloInstructionSet& do_not_fuse,
    absl::flat_hash_map<std::pair<HloInstruction*, HloInstruction*>, bool>*
        result_cache) {
  if (consumer == producer) {
    return true;
  }
  if (!consumer->IsFusible()) {
    return false;
  }
  auto cache_it = result_cache->find(std::make_pair(producer, consumer));
  if (cache_it != result_cache->end()) {
    return cache_it->second;
  }
  bool result = true;
  for (int64 i = 0, e = consumer->operand_count(); i < e; ++i) {
    auto* consumer_operand = consumer->mutable_operand(i);
    // If the operand is not on a path to the producer, it doesn't matter
    // whether it's fusible.
    if (!reachability_->IsReachable(producer, consumer_operand)) {
      continue;
    }
    if (do_not_fuse.count(consumer_operand) > 0 || !ShouldFuse(consumer, i)) {
      result = false;
      break;
    }
    // The producer is reachable from consumer_operand which means we need
    // to be able to fuse consumer_operand into consumer in order for
    // producer to be fusible into consumer on all paths.
    // Perform the recursive step: make sure producer can be fused into
    // consumer_operand on all paths.
    if (!CanFuseOnAllPaths(producer, consumer_operand, do_not_fuse,
                           result_cache)) {
      result = false;
      break;
    }
  }
  result_cache->emplace(std::make_pair(producer, consumer), result);
  return result;
}

InstructionFusion::HloInstructionSet
InstructionFusion::ComputeGloballyUnfusible(
    absl::Span<HloInstruction* const> post_order) {
  // Forbid fusion of producers that:
  // a) Need to be duplicated, unless they can be fused into all consumers
  //    via all paths.
  // b) Are more than unary, that is, fusing them would likely lead to an
  //    increase in memory bandwidth use.
  //
  // Note that if we allow fusion by these global rules, we may still forbid
  // fusing operations that require duplication later depending on
  // is_expensive_().
  HloInstructionSet do_not_duplicate;
  absl::flat_hash_map<std::pair<HloInstruction*, HloInstruction*>, bool>
      can_fuse_on_all_paths_result_cache;
  for (HloInstruction* consumer : post_order) {
    for (HloInstruction* producer : consumer->operands()) {
      if (do_not_duplicate.count(producer) > 0) {
        continue;
      }

      // If the producer is effectively not more than unary, duplicating it
      // will not increase the number of relevant inputs read, as the fusion
      // node will only need to read at most 1 relevant input (the input of
      // the producer). In that case, we do not forbid fusion of the operation
      // here.
      if (EffectivelyAtMostUnary(producer)) {
        continue;
      }

      // If the total size of the inputs is less than or equal to the total size
      // of the outputs for the producer then duplicating it won't increase the
      // memory traffic. In that case, we do not forbid fusion of the operation
      // here.
      auto total_size = [](const Shape& shape) {
        int64 size = 0;
        ShapeUtil::ForEachSubshape(
            shape,
            [&size](const Shape& subshape, const ShapeIndex& shape_index) {
              if (ShapeUtil::IsArray(subshape)) {
                size += ShapeUtil::ElementsIn(subshape);
              }
            });
        return size;
      };
      int64 operands_size = 0;
      for (const HloInstruction* op : producer->operands()) {
        operands_size += total_size(op->shape());
      }
      if (operands_size <= total_size(producer->shape())) {
        continue;
      }

      // Otherwise we will forbid fusing the op unless we can fuse it into
      // all of its consumers on all paths.
      //
      // That means, that for:
      // A --> B (fusible)
      //   \-> C (non-fusible)
      // A will be not allowed to be fused into B, as it cannot be fused into C.
      //
      // Similarly, for:
      // A -------------> B
      //   \-> C -> D -/
      // If:
      // - A is fusible into B and C, and D is fusible into B
      // - C is *not* fusible into D
      // A will be not allowed to be fused into B, as it cannot be fused via
      // all paths.
      if (producer->IsFusible() &&
          CanFuseOnAllPaths(producer, consumer, do_not_duplicate,
                            &can_fuse_on_all_paths_result_cache)) {
        continue;
      }
      do_not_duplicate.insert(producer);
    }
  }

  return do_not_duplicate;
}

namespace {

// A FusionQueue that uses reverse post order.
//
// We want to be able to remove arbitrary instructions from the post order and
// also compare positions of instructions in the post order. To make this
// possible, create vector of instructions in post order and create a map from
// HloInstruction* to the instruction's index in the vector. An instruction is
// "removed" from the vector by setting it's element to nullptr.
class ReversePostOrderFusionQueue : public FusionQueue {
 public:
  explicit ReversePostOrderFusionQueue(HloComputation* computation) {
    post_order_ = computation->MakeInstructionPostOrder();

    for (size_t i = 0; i < post_order_.size(); ++i) {
      InsertOrDie(&post_order_index_, post_order_[i], i);
    }
  }

  std::pair<HloInstruction*, std::vector<int64>>
  DequeueNextInstructionAndOperandsToFuseInOrder() override {
    // Instructions are "removed" from the post order by nulling out the element
    // in the vector, so if the pointer is null, continue to the next
    // instruction in the sort.
    while (!post_order_.empty() && post_order_.back() == nullptr) {
      post_order_.pop_back();
    }
    if (post_order_.empty()) {
      return std::pair<HloInstruction*, std::vector<int64>>{nullptr, {}};
    }
    // We want to iterate in reverse post order, so remove from the back of the
    // vector.
    HloInstruction* instruction = post_order_.back();
    post_order_.pop_back();

    CHECK(instruction != nullptr);
    // Remove instruction from the index map to ensure the vector and map stay
    // consistent.
    post_order_index_.erase(instruction);

    // Consider each operand of this instruction for fusion into this
    // instruction. We want to consider the operands in a particular order to
    // avoid creating duplicate instruction clones in the fusion instruction.
    // For example, consider the following expression:
    //
    //   A = ...
    //   B = op(A)
    //   C = op(A, B)
    //
    // If we are considering the operands of C for fusion into C. We might
    // fuse A or B first. If we fuse A first, we get:
    //
    //   A = ...
    //   B = op(A)
    //   C_fusion = { A' = ...
    //                C' = op(A', B) }
    //
    // Where A' and C' are clones of A and C, respectively. Now only B is an
    // operand of the fusion instruction C_fusion, so then we fuse B:
    //
    //   A = ...
    //   B = op(A)
    //   C_fusion = { A' = ...
    //                B' = op(A)
    //                C' = op(A', B') }
    //
    // Now A is an operand of C_fusion again, so we then fuse A (again!):
    //
    //   A = ...
    //   B = op(A)
    //   C_fusion = { A' = ...
    //                A" = ..
    //                B' = op(A")
    //                C' = op(A', B') }
    //
    // We prevent this duplication by considering the operands in the order
    // they appear int the queue. In the example, this ensures that B will be
    // considered before A.
    //
    // We store the original indices of the operands to pass to ShouldFuse.
    std::vector<int64> sorted_operand_numbers;
    sorted_operand_numbers.reserve(instruction->operands().size());
    for (int i = 0; i < instruction->operands().size(); ++i) {
      // This will happen if we have two possible instructions to fuse the
      // same operand into; once the operand is fused into one instruction,
      // the other instruction will get a new get-tuple-element as its
      // operand, which is not in the queue.
      // TODO(tjoerg): Look into fusing past these multi-output fuse points.
      if (!ContainsKey(post_order_index_, instruction->mutable_operand(i))) {
        continue;
      }
      sorted_operand_numbers.push_back(i);
    }
    std::sort(
        sorted_operand_numbers.begin(), sorted_operand_numbers.end(),
        [&](int64 i, int64 j) {
          // Instructions with higher priority in the queue come first.
          return (
              FindOrDie(post_order_index_, instruction->mutable_operand(i)) >
              FindOrDie(post_order_index_, instruction->mutable_operand(j)));
        });
    return std::make_pair(instruction, sorted_operand_numbers);
  }

  void OnFusingInstruction(HloInstruction* fusion,
                           HloInstruction* original_producer,
                           HloInstruction* original_consumer) override {
    // Fusing an instruction into a fusion instruction can change the operand
    // set of the fusion instruction. For simplicity just re-enqueue the
    // instruction and reconsider it for further fusion in the next iteration.
    InsertOrDie(&post_order_index_, fusion, post_order_.size());
    post_order_.push_back(fusion);
  }

  void RemoveInstruction(HloInstruction* instruction) override {
    post_order_[FindOrDie(post_order_index_, instruction)] = nullptr;
    post_order_index_.erase(instruction);
  }

 private:
  std::vector<HloInstruction*> post_order_;
  absl::flat_hash_map<HloInstruction*, int> post_order_index_;
};

}  // namespace

std::unique_ptr<FusionQueue> InstructionFusion::GetFusionQueue(
    HloComputation* computation,
    const std::function<bool(HloInstruction*)>& skip_producer) {
  return absl::make_unique<ReversePostOrderFusionQueue>(computation);
}

StatusOr<bool> InstructionFusion::Run(HloModule* module) {
  VLOG(2) << "Before instruction fusion:";
  XLA_VLOG_LINES(2, module->ToString());

  bool changed = false;
  module_ = module;
  for (auto* computation : module->MakeNonfusionComputations()) {
    CHECK(!computation->IsFusionComputation());
    computation_ = computation;
    reachability_ = computation_->ComputeReachability();

    HloInstructionSet do_not_duplicate =
        ComputeGloballyUnfusible(computation_->MakeInstructionPostOrder());
    auto fusion_queue =
        GetFusionQueue(computation_, [&](HloInstruction* producer) {
          return do_not_duplicate.count(producer) > 0;
        });

    // Instruction fusion effectively fuses edges in the computation graph
    // (producer instruction -> consumer instruction) so we iterate over all
    // edges. When we fuse an edge, we create a copy of the producer inside the
    // fusion instruction.
    while (true) {
      auto next_entry =
          fusion_queue->DequeueNextInstructionAndOperandsToFuseInOrder();
      auto instruction = next_entry.first;
      if (instruction == nullptr) {
        break;
      }

      if (!instruction->IsFusible() &&
          instruction->opcode() != HloOpcode::kFusion) {
        continue;
      }

      std::vector<int64>& sorted_operand_numbers = next_entry.second;

      for (int64 i : sorted_operand_numbers) {
        HloInstruction* operand = instruction->mutable_operand(i);

        if (!operand->IsFusible()) {
          continue;
        }

        HloInstruction* fusion_instruction;
        // Try "regular" fusion if the operand may be duplicated. Otherwise,
        // perform multi-output fusion, unless this creates a cycle.
        // TODO(tjoerg): Consider making multi-output fusion the default.
        if (ShouldFuse(instruction, i) &&
            do_not_duplicate.count(operand) == 0) {
          fusion_queue->PreFusion(operand, instruction);
          fusion_instruction = Fuse(operand, instruction);
        } else if (ShouldFuseIntoMultiOutput(instruction, i) &&
                   !MultiOutputFusionCreatesCycle(operand, instruction)) {
          fusion_queue->PreFusion(operand, instruction);
          fusion_instruction = FuseIntoMultiOutput(operand, instruction);
        } else {
          continue;
        }

        fusion_queue->OnFusingInstruction(fusion_instruction, operand,
                                          instruction);
        changed = true;

        if (operand->user_count() == 0) {
          do_not_duplicate.erase(operand);
          // Operand is now dead. Remove from queue.
          fusion_queue->RemoveInstruction(operand);
          // Remove from computation.
          TF_RETURN_IF_ERROR(computation_->RemoveInstruction(operand));
        }

        if (fusion_instruction != instruction) {
          do_not_duplicate.erase(instruction);
        }
        break;
      }
    }
  }

  VLOG(2) << "After instruction fusion:";
  XLA_VLOG_LINES(2, module->ToString());

  return changed;
}

HloInstruction* InstructionFusion::AddFusionInstruction(
    HloInstruction* producer, HloInstruction* consumer) {
  HloInstruction* fusion_instruction;
  auto kind = ChooseKind(producer, consumer);
  if (consumer->opcode() == HloOpcode::kFusion) {
    fusion_instruction = consumer;
    if (kind != fusion_instruction->fusion_kind()) {
      fusion_instruction->set_fusion_kind(kind);
    }
  } else {
    fusion_instruction = computation_->AddInstruction(
        HloInstruction::CreateFusion(consumer->shape(), kind, consumer));
    TF_CHECK_OK(computation_->ReplaceInstruction(consumer, fusion_instruction));
  }
  return fusion_instruction;
}

HloInstruction* InstructionFusion::Fuse(HloInstruction* producer,
                                        HloInstruction* consumer) {
  VLOG(2) << "Fusing " << producer->ToString() << " into "
          << consumer->ToString();
  HloInstruction* fusion_instruction = AddFusionInstruction(producer, consumer);
  fusion_instruction->FuseInstruction(producer);
  return fusion_instruction;
}

HloInstruction* InstructionFusion::FuseIntoMultiOutput(
    HloInstruction* producer, HloInstruction* consumer) {
  VLOG(2) << "Multi-output fusing " << producer->ToString() << " into "
          << consumer->ToString();
  HloInstruction* fusion_instruction = AddFusionInstruction(producer, consumer);
  fusion_instruction->FuseInstructionIntoMultiOutput(producer);
  return fusion_instruction;
}

bool InstructionFusion::MultiOutputFusionCreatesCycle(
    HloInstruction* producer, HloInstruction* consumer) {
  return absl::c_any_of(
      consumer->operands(), [&](const HloInstruction* consumer_operand) {
        // The fusion algorithm traverses the HLO graph in reverse post order.
        // Thus `cosumers` is visited before its operands (including
        // `producer`). Therefore, consumer operands cannot have been fused yet.
        // It is thus safe to use the pre-computed reachability map.
        return consumer_operand != producer &&
               reachability_->IsReachable(producer, consumer_operand);
      });
}

bool InstructionFusion::ShouldFuse(HloInstruction* consumer,
                                   int64 operand_index) {
  HloInstruction* producer = consumer->mutable_operand(operand_index);

  // Cost condition: don't duplicate expensive instructions.
  if (FusionWouldDuplicate(*producer, *consumer) &&
      (!may_duplicate_ || is_expensive_(*producer)) &&
      !IsAlwaysDuplicable(*producer)) {
    return false;
  }

  if (consumer->opcode() == HloOpcode::kFusion &&
      consumer->fusion_kind() != HloInstruction::FusionKind::kLoop &&
      consumer->fusion_kind() != HloInstruction::FusionKind::kInput &&
      consumer->fusion_kind() != HloInstruction::FusionKind::kOutput) {
    return false;
  }

  if (producer->CouldBeBitcast() &&
      // We can't fuse parameters anyhow, so we leave the user unfused to become
      // a bitcast. If the operand is not a parameter, we would break a
      // potential fusion to make it a bitcast, which is not so clear a win.
      producer->operand(0)->opcode() == HloOpcode::kParameter) {
    return false;
  }

  return true;
}

HloInstruction::FusionKind InstructionFusion::ChooseKind(
    const HloInstruction* producer, const HloInstruction* consumer) {
  return HloInstruction::FusionKind::kLoop;
}

}  // namespace xla