aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/hlo_ordering_test.cc
blob: 126d3a2d9c70bff1d2a022e395652049768d6d21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/hlo_ordering.h"

#include <memory>
#include <string>

#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/hlo_dataflow_analysis.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/service/hlo_opcode.h"
#include "tensorflow/compiler/xla/service/hlo_parser.h"
#include "tensorflow/compiler/xla/service/hlo_scheduling.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/tests/hlo_test_base.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"

namespace xla {
namespace {

class HloOrderingTest : public HloTestBase {};

TEST_F(HloOrderingTest, InstructionsInDifferentComputations) {
  // Tests the ordering of instructions in different computations using the
  // following HLO code:
  //
  // Entry computation:
  //   %x = Call(A, {})
  //   %y = Call(B, {%x})
  //
  // Computation A:
  //   %a = Call(C, {})
  //
  // Computation B:
  //   %b = Call(C, {})
  //
  // Computation C:
  //   %c = Constant(42.0f)
  //
  // This results in a diamond-shaped callgraph.
  auto module = CreateNewModule();
  const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {});

  auto builder_c = HloComputation::Builder("C");
  HloInstruction* c = builder_c.AddInstruction(
      HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f)));
  HloComputation* computation_c =
      module->AddEmbeddedComputation(builder_c.Build());

  auto builder_b = HloComputation::Builder("B");
  builder_b.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape, "param"));
  HloInstruction* b = builder_b.AddInstruction(
      HloInstruction::CreateCall(scalar_shape, {}, computation_c));
  HloComputation* computation_b =
      module->AddEmbeddedComputation(builder_b.Build());

  auto builder_a = HloComputation::Builder("A");
  HloInstruction* a = builder_a.AddInstruction(
      HloInstruction::CreateCall(scalar_shape, {}, computation_c));
  HloComputation* computation_a =
      module->AddEmbeddedComputation(builder_a.Build());

  auto builder = HloComputation::Builder(TestName());
  HloInstruction* x = builder.AddInstruction(
      HloInstruction::CreateCall(scalar_shape, {}, computation_a));
  HloInstruction* y = builder.AddInstruction(
      HloInstruction::CreateCall(scalar_shape, {x}, computation_b));
  module->AddEntryComputation(builder.Build());

  DependencyHloOrdering ordering(module.get());
  EXPECT_TRUE(ordering.ExecutesBefore(x, y));
  EXPECT_FALSE(ordering.ExecutesBefore(y, x));

  EXPECT_TRUE(ordering.ExecutesBefore(a, b));
  EXPECT_FALSE(ordering.ExecutesBefore(b, a));

  EXPECT_FALSE(ordering.ExecutesBefore(a, x));
  EXPECT_TRUE(ordering.ExecutesBefore(a, y));
  EXPECT_FALSE(ordering.ExecutesBefore(x, a));
  EXPECT_FALSE(ordering.ExecutesBefore(y, a));

  EXPECT_FALSE(ordering.ExecutesBefore(b, x));
  EXPECT_FALSE(ordering.ExecutesBefore(b, y));
  EXPECT_TRUE(ordering.ExecutesBefore(x, b));
  EXPECT_FALSE(ordering.ExecutesBefore(y, b));

  // Instruction 'c' is called from multiple callsites and should be unordered
  // relative to all other instructions in the module.
  EXPECT_FALSE(ordering.ExecutesBefore(c, a));
  EXPECT_FALSE(ordering.ExecutesBefore(c, b));
  EXPECT_FALSE(ordering.ExecutesBefore(c, x));
  EXPECT_FALSE(ordering.ExecutesBefore(c, y));
  EXPECT_FALSE(ordering.ExecutesBefore(a, c));
  EXPECT_FALSE(ordering.ExecutesBefore(b, c));
  EXPECT_FALSE(ordering.ExecutesBefore(x, c));
  EXPECT_FALSE(ordering.ExecutesBefore(y, c));
}

TEST_F(HloOrderingTest, InstructionsInWhileComputations) {
  // Tests the ordering of instructions in the body and condition of a while
  // instruction. HLO code:
  //
  // body(F32[]) %param):
  //   %negate = Negate(%param)
  //
  // condition(F32[] %param):
  //   %convert = Convert<PRED>(%param)
  //
  // entry:
  //   %constant = Constant(1.0)
  //   return While(%constant, body, condition)
  //
  auto module = CreateNewModule();
  const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {});

  auto body_builder = HloComputation::Builder("body");
  auto body_param = body_builder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape, "body_param"));
  auto negate = body_builder.AddInstruction(HloInstruction::CreateUnary(
      scalar_shape, HloOpcode::kNegate, body_param));
  HloComputation* body = module->AddEmbeddedComputation(body_builder.Build());

  auto cond_builder = HloComputation::Builder("condition");
  auto cond_param = cond_builder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape, "cond_param"));
  auto convert = cond_builder.AddInstruction(HloInstruction::CreateConvert(
      ShapeUtil::MakeShape(xla::PRED, {}), cond_param));
  HloComputation* condition =
      module->AddEmbeddedComputation(cond_builder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto constant = builder.AddInstruction(
      HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0)));
  auto xla_while = builder.AddInstruction(
      HloInstruction::CreateWhile(scalar_shape, condition, body, constant));
  module->AddEntryComputation(builder.Build());

  DependencyHloOrdering ordering(module.get());
  EXPECT_TRUE(ordering.ExecutesBefore(constant, xla_while));
  EXPECT_TRUE(ordering.ExecutesBefore(constant, cond_param));
  EXPECT_TRUE(ordering.ExecutesBefore(constant, convert));
  EXPECT_TRUE(ordering.ExecutesBefore(constant, body_param));
  EXPECT_TRUE(ordering.ExecutesBefore(constant, negate));

  // The while should be unordered relative to the body and condition
  // instructions.
  EXPECT_FALSE(ordering.ExecutesBefore(xla_while, body_param));
  EXPECT_FALSE(ordering.ExecutesBefore(xla_while, cond_param));
  EXPECT_FALSE(ordering.ExecutesBefore(body_param, xla_while));
  EXPECT_FALSE(ordering.ExecutesBefore(cond_param, xla_while));

  // Condition instructions should be ordered before body instructions.
  EXPECT_TRUE(ordering.ExecutesBefore(cond_param, body_param));
  EXPECT_TRUE(ordering.ExecutesBefore(convert, body_param));
  EXPECT_TRUE(ordering.ExecutesBefore(cond_param, negate));
  EXPECT_TRUE(ordering.ExecutesBefore(convert, negate));

  EXPECT_FALSE(ordering.ExecutesBefore(body_param, cond_param));
}

TEST_F(HloOrderingTest, ValuesInWhileComputations) {
  // Tests the ordering of values (defined by dataflow analysis) in the body and
  // condition of a while instruction. HLO code:
  //
  // body(F32[]) %param):
  //   %negate = Negate(%param)
  //
  // condition(F32[] %param):
  //   %convert = Convert<PRED>(%param)
  //
  // entry:
  //   %constant = Constant(1.0)
  //   %while = While(%constant, body, condition)
  //   %add = Add(%constant, %while)
  //
  auto module = CreateNewModule();
  const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {});

  auto body_builder = HloComputation::Builder("body");
  auto body_param = body_builder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape, "body_param"));
  auto negate = body_builder.AddInstruction(HloInstruction::CreateUnary(
      scalar_shape, HloOpcode::kNegate, body_param));
  HloComputation* body = module->AddEmbeddedComputation(body_builder.Build());

  auto cond_builder = HloComputation::Builder("condition");
  auto cond_param = cond_builder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape, "cond_param"));
  auto convert = cond_builder.AddInstruction(HloInstruction::CreateConvert(
      ShapeUtil::MakeShape(xla::PRED, {}), cond_param));
  HloComputation* condition =
      module->AddEmbeddedComputation(cond_builder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto constant = builder.AddInstruction(
      HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0)));
  auto xla_while = builder.AddInstruction(
      HloInstruction::CreateWhile(scalar_shape, condition, body, constant));
  auto add = builder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape, HloOpcode::kAdd, constant, xla_while));
  module->AddEntryComputation(builder.Build());

  TF_ASSERT_OK_AND_ASSIGN(auto dataflow,
                          HloDataflowAnalysis::Run(*module, /*ssa_form=*/true));
  DependencyHloOrdering ordering(module.get());

  // Init value is defined before the while, but live range is not before the
  // while because of the use of the init value in the add.
  EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(constant),
                                       dataflow->GetValueDefinedAt(xla_while)));
  EXPECT_FALSE(ordering.LiveRangeStrictlyBefore(
      dataflow->GetValueDefinedAt(constant),
      dataflow->GetValueDefinedAt(xla_while), *dataflow));
  EXPECT_TRUE(ordering.MayInterfere(dataflow->GetValueDefinedAt(constant),
                                    dataflow->GetValueDefinedAt(xla_while),
                                    *dataflow));

  // Any value defined in the body or condition is defined before the while, and
  // has a live range strictly before the while.
  EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(negate),
                                       dataflow->GetValueDefinedAt(xla_while)));
  EXPECT_TRUE(ordering.LiveRangeStrictlyBefore(
      dataflow->GetValueDefinedAt(negate),
      dataflow->GetValueDefinedAt(xla_while), *dataflow));
  EXPECT_FALSE(ordering.MayInterfere(dataflow->GetValueDefinedAt(negate),
                                     dataflow->GetValueDefinedAt(xla_while),
                                     *dataflow));

  EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(convert),
                                       dataflow->GetValueDefinedAt(xla_while)));
  EXPECT_TRUE(ordering.LiveRangeStrictlyBefore(
      dataflow->GetValueDefinedAt(convert),
      dataflow->GetValueDefinedAt(xla_while), *dataflow));
  EXPECT_FALSE(ordering.MayInterfere(dataflow->GetValueDefinedAt(convert),
                                     dataflow->GetValueDefinedAt(xla_while),
                                     *dataflow));

  // The live range of the while should be before the add.
  EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(xla_while),
                                       dataflow->GetValueDefinedAt(add)));
  ASSERT_EQ(dataflow->GetValueDefinedAt(xla_while).uses().size(), 1);

  const HloUse& while_use = dataflow->GetValueDefinedAt(xla_while).uses()[0];
  EXPECT_EQ(while_use.instruction, add);
  EXPECT_TRUE(ordering.UseIsBeforeValueDefinition(
      while_use, dataflow->GetValueDefinedAt(add), *dataflow));
  EXPECT_TRUE(ordering.LiveRangeStrictlyBefore(
      dataflow->GetValueDefinedAt(xla_while), dataflow->GetValueDefinedAt(add),
      *dataflow));
}

// Regression test for HloOrdering::ToString() crashing when fed a computation
// containing a fusion node.
TEST_F(HloOrderingTest, ToStringDoesNotCrash) {
  const char* module_str = R"(
HloModule test_module

body.v8 {
  prev.1 = (s32[], f32[3]{0}, f32[3]{0}, f32[3]{0}) parameter(0)
  get-tuple-element.4 = s32[] get-tuple-element(prev.1), index=0
  constant.1 = s32[] constant(1)
  add = s32[] add(get-tuple-element.4, constant.1)
  get-tuple-element.5 = f32[3]{0} get-tuple-element(prev.1), index=3
  get-tuple-element.6 = f32[3]{0} get-tuple-element(prev.1), index=1
  get-tuple-element.7 = f32[3]{0} get-tuple-element(prev.1), index=2
  ROOT tuple = (s32[], f32[3]{0}, f32[3]{0}, f32[3]{0}) tuple(add, get-tuple-element.5, get-tuple-element.6, get-tuple-element.7)
}

condition.v4 {
  constant.2 = s32[] constant(2)
  prev.2 = (s32[], f32[3]{0}, f32[3]{0}, f32[3]{0}) parameter(0)
  get-tuple-element.8 = s32[] get-tuple-element(prev.2), index=0
  ROOT greater-than = pred[] greater-than(constant.2, get-tuple-element.8)
}

fused_computation {
  get-tuple-element.5.param_1 = f32[3]{0} parameter(1)
  get-tuple-element.6.param_2 = f32[3]{0} parameter(2)
  add.4 = f32[3]{0} add(get-tuple-element.5.param_1, get-tuple-element.6.param_2)
  get-tuple-element.7.param_1.1 = f32[3]{0} parameter(0)
  ROOT add.5 = f32[3]{0} add(add.4, get-tuple-element.7.param_1.1)
}

ENTRY while.v11 {
  constant.5 = s32[] constant(0)
  constant.6 = f32[3]{0} constant({1, 1, 1})
  constant.7 = f32[3]{0} constant({2, 2, 2})
  constant.8 = f32[3]{0} constant({3, 3, 3})
  tuple.1 = (s32[], f32[3]{0}, f32[3]{0}, f32[3]{0}) tuple(constant.5, constant.6, constant.7, constant.8)
  while = (s32[], f32[3]{0}, f32[3]{0}, f32[3]{0}) while(tuple.1), condition=condition.v4, body=body.v8
  get-tuple-element.9 = f32[3]{0} get-tuple-element(while), index=3
  get-tuple-element.10 = f32[3]{0} get-tuple-element(while), index=1
  get-tuple-element.11 = f32[3]{0} get-tuple-element(while), index=2
  ROOT fusion = f32[3]{0} fusion(get-tuple-element.9, get-tuple-element.10, get-tuple-element.11), kind=kLoop, calls=fused_computation
})";

  TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module,
                          ParseHloString(module_str));
  DependencyHloOrdering ordering(module.get());
  ordering.ToString();  // Shouldn't crash.
}

TEST_F(HloOrderingTest, ConditionalInstructionOrdering) {
  const char* module_str = R"(
HloModule test_conditional_module

true_branch {
  param.1 = (s32[], s32[]) parameter(0)
  get-tuple-element.1 = s32[] get-tuple-element(param.1), index=0
  get-tuple-element.2 = s32[] get-tuple-element(param.1), index=1
  add.1 = s32[] add(get-tuple-element.1, get-tuple-element.2)
  ROOT tuple.1 = (s32[], s32[]) tuple(add.1, get-tuple-element.1)
}

false_branch {
  param.2 = (s32[], s32[]) parameter(0)
  get-tuple-element.3 = s32[] get-tuple-element(param.2), index=0
  get-tuple-element.4 = s32[] get-tuple-element(param.2), index=1
  add.2 = s32[] add(get-tuple-element.3, get-tuple-element.4)
  ROOT tuple.2 = (s32[], s32[]) tuple(add.2, get-tuple-element.4)
}

ENTRY root {
  param.3 = (pred[], (s32[], s32[])) parameter(0)
  pred.1 = pred[] get-tuple-element(param.3), index=0
  cond_arg.1 = (s32[], s32[]) get-tuple-element(param.3), index=1
  conditional = (s32[], s32[]) conditional(pred.1, cond_arg.1, cond_arg.1), true_computation=true_branch, false_computation=false_branch
  cond_res.1 = s32[] get-tuple-element(conditional), index=0
  cond_res.2 = s32[] get-tuple-element(conditional), index=1
  add.3 = s32[] add(cond_res.1, cond_res.2)
  ROOT result = (s32[], s32[], s32[]) tuple(add.3, cond_res.1, cond_res.2)
})";

  TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module,
                          ParseHloString(module_str));
  TF_ASSERT_OK_AND_ASSIGN(auto dataflow,
                          HloDataflowAnalysis::Run(*module, /*ssa_form=*/true));
  DependencyHloOrdering ordering(module.get());

  // Even though the true and false branches has no ordering, since they do not
  // interfere (as they are mutually exclusive), we define the true computation
  // to be before the false one.
  // Similarly, any instruction in the true or false branches are considered
  // before the conditional instruction. The roots are effectively "at the same
  // time" WRT the conditional, but they are Phi-ed anyway.
  HloInstruction* add_1 = FindInstruction(module.get(), "add.1");
  HloInstruction* add_2 = FindInstruction(module.get(), "add.2");
  HloInstruction* add_3 = FindInstruction(module.get(), "add.3");
  HloInstruction* conditional = FindInstruction(module.get(), "conditional");
  EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(add_1),
                                       dataflow->GetValueDefinedAt(add_2)));
  EXPECT_TRUE(
      ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(add_2),
                               dataflow->GetValueDefinedAt(conditional)));
  EXPECT_TRUE(
      ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(add_1),
                               dataflow->GetValueDefinedAt(conditional)));
  EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(add_1),
                                       dataflow->GetValueDefinedAt(add_3)));
  EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(add_2),
                                       dataflow->GetValueDefinedAt(add_3)));
}

}  // namespace
}  // namespace xla