aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/hlo_instruction.h
blob: 81fe1d0a9a4b2e9e6f41bc9b373f4ad4d6b6120a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// HLO instructions are in DAG form and represent the computations that the user
// has built up via the XLA service interface. They are ultimately lowered
// in a platform-aware way by traversing the HLO DAG and emitting a lowered
// form; e.g. see DfsHloVisitor.

#ifndef TENSORFLOW_COMPILER_XLA_SERVICE_HLO_INSTRUCTION_H_
#define TENSORFLOW_COMPILER_XLA_SERVICE_HLO_INSTRUCTION_H_

#include <functional>
#include <iosfwd>
#include <list>
#include <memory>
#include <set>
#include <string>
#include <tuple>
#include <vector>

#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/container/inlined_vector.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "tensorflow/compiler/xla/iterator_util.h"
#include "tensorflow/compiler/xla/literal.h"
#include "tensorflow/compiler/xla/map_util.h"
#include "tensorflow/compiler/xla/service/dfs_hlo_visitor.h"
#include "tensorflow/compiler/xla/service/hlo.pb.h"
#include "tensorflow/compiler/xla/service/hlo_clone_context.h"
#include "tensorflow/compiler/xla/service/hlo_domain_metadata.h"
#include "tensorflow/compiler/xla/service/hlo_opcode.h"
#include "tensorflow/compiler/xla/service/hlo_sharding.h"
#include "tensorflow/compiler/xla/service/name_uniquer.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/gtl/iterator_range.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/platform/protobuf.h"
#include "tensorflow/core/platform/types.h"

namespace xla {

class HloComputation;
class HloModule;

// A bunch of switches that control how the hlo text should be printed.
class HloPrintOptions {
 public:
  enum class PrintSubcomputationMode {
    kOff,         // Do not print anything about subcomputations.
    kNameOnly,    // Only print the name of subcomputations.
    kFullBodies,  // Print the full bodies of subcomputations.
  };

  // Constructs the default print options: don't print large constants, don't
  // compact operands, no indentation.
  HloPrintOptions()
      : print_large_constants_(false),
        print_subcomputation_mode_(PrintSubcomputationMode::kNameOnly),
        print_metadata_(true),
        print_backend_config_(true),
        compact_operands_(false),
        print_operand_shape_(true),
        print_operand_names_(true),
        print_program_shape_(true),
        print_percent_(true),
        print_control_dependencies_(true),
        canonicalize_instruction_names_(false),
        indent_amount_(0),
        is_in_nested_computation_(false) {}

  static HloPrintOptions ShortParsable() {
    return HloPrintOptions()
        .set_print_large_constants(true)
        .set_print_subcomputation_mode(PrintSubcomputationMode::kNameOnly)
        .set_print_metadata(false)
        .set_print_backend_config(false)
        .set_print_operand_shape(false)
        .set_print_program_shape(false)
        .set_print_percent(false)
        .set_print_control_dependencies(false);
  }

  // Options to produce the canonical string representing an isomorphic
  // computation graph.
  static HloPrintOptions Canonical() {
    return HloPrintOptions()
        .set_print_subcomputation_mode(PrintSubcomputationMode::kFullBodies)
        .set_print_metadata(false)
        .set_print_backend_config(false)
        .set_compact_operands(true)
        .set_print_operand_names(false)
        .set_print_operand_shape(true)
        .set_print_program_shape(false)
        .set_print_percent(false)
        .set_print_control_dependencies(false)
        .set_canonicalize_instruction_names(true);
  }

  // If true, large constants will be printed out.
  HloPrintOptions& set_print_large_constants(bool value) {
    print_large_constants_ = value;
    return *this;
  }

  HloPrintOptions& set_print_subcomputation_mode(
      PrintSubcomputationMode value) {
    print_subcomputation_mode_ = value;
    return *this;
  }

  // If true, metadata will be printed.
  HloPrintOptions& set_print_metadata(bool value) {
    print_metadata_ = value;
    return *this;
  }

  // If true, backend_config will be printed.
  HloPrintOptions& set_print_backend_config(bool value) {
    print_backend_config_ = value;
    return *this;
  }

  // If true, operands' shapes will be printed.
  HloPrintOptions& set_print_operand_shape(bool value) {
    print_operand_shape_ = value;
    return *this;
  }

  // If true, the operand names will be printed.
  HloPrintOptions& set_print_operand_names(bool value) {
    print_operand_names_ = value;
    return *this;
  }

  // If true, program shape of hlo computations will be printed.
  HloPrintOptions& set_print_program_shape(bool value) {
    print_program_shape_ = value;
    return *this;
  }

  // If true, names will be printed with prefix '%'.
  HloPrintOptions& set_print_percent(bool value) {
    print_percent_ = value;
    return *this;
  }

  // If true, control dependencies will be printed.
  HloPrintOptions& set_print_control_dependencies(bool value) {
    print_control_dependencies_ = value;
    return *this;
  }

  // If true, only a part of operands will be printed out (note that in this
  // case the text will not be parsable).
  HloPrintOptions& set_compact_operands(bool value) {
    compact_operands_ = value;
    return *this;
  }

  // If true, canonicalizes instructions' name. Instead of using "%foo.1" as
  // the name of an instruction, we use "%tmp_1", "%tmp_2" etc.
  HloPrintOptions& set_canonicalize_instruction_names(bool value) {
    canonicalize_instruction_names_ = value;
    return *this;
  }

  // The indent of the hlo text block.
  HloPrintOptions& set_indent_amount(int value) {
    indent_amount_ = value;
    return *this;
  }

  // If true, indicates the instruction being printed is inside a nested
  // computation.
  HloPrintOptions& set_is_in_nested_computation(bool value) {
    is_in_nested_computation_ = value;
    return *this;
  }

  bool print_large_constants() const { return print_large_constants_; }
  PrintSubcomputationMode print_subcomputation_mode() const {
    return print_subcomputation_mode_;
  }
  bool print_metadata() const { return print_metadata_; }
  bool print_backend_config() const { return print_backend_config_; }
  bool compact_operands() const { return compact_operands_; }
  bool print_operand_shape() const { return print_operand_shape_; }
  bool print_operand_names() const { return print_operand_names_; }
  bool print_program_shape() const { return print_program_shape_; }
  bool print_percent() const { return print_percent_; }
  bool print_control_dependencies() const {
    return print_control_dependencies_;
  }
  bool canonicalize_instruction_names() const {
    return canonicalize_instruction_names_;
  }
  int indent_amount() const { return indent_amount_; }
  int is_in_nested_computation() const { return is_in_nested_computation_; }

 private:
  bool print_large_constants_;
  PrintSubcomputationMode print_subcomputation_mode_;
  bool print_metadata_;
  bool print_backend_config_;
  bool compact_operands_;
  bool print_operand_shape_;
  bool print_operand_names_;
  bool print_program_shape_;
  bool print_percent_;
  bool print_control_dependencies_;
  bool canonicalize_instruction_names_;
  int indent_amount_;
  bool is_in_nested_computation_;
};

// For canonical string output, we need to have a canonical way to rename
// each instruction and its operands. Each operand is renamed as "tmp_<xxx>",
// where <xxx> is an index starting from 0.
class CanonicalNameMap {
 public:
  CanonicalNameMap() : index(0) {}

  string LookupOrInsert(const string& old_name) {
    auto iter = canonical_name_map.find(old_name);
    if (iter != canonical_name_map.end()) {
      return iter->second;
    }

    string new_name = absl::StrCat("tmp_", index++);
    canonical_name_map[old_name] = new_name;
    return new_name;
  }
  void Clear() {
    canonical_name_map.clear();
    index = 0;
  }

 private:
  int64 index;
  absl::flat_hash_map<string, string> canonical_name_map;
};

// HLO instructions are the atomic unit of the high-level compiler's IR.
//
// HloInstructions live inside of an HloComputation, which is analogous to a
// function in other programming languages.  Nodes have no total order within
// their computation.  Instead, they have a partial ordering determined by their
// data and control dependencies.
//
// HLO does not have basic blocks or explicit "branch" instructions.  Instead,
// certain HloInstructions -- namely, kWhile, kConditional, and kCall -- encode
// control flow.  For example, the kConditional HLO executes one of two possible
// computations, depending on the runtime value of a predicate.
//
// HLO is pure (mostly).  It has no concept of mutable state.  Instead, data
// values are produced by one HLO and flow into consumers across dependency
// edges.
class HloInstruction {
 public:
  // A fusion node computes the same value a call to its fusion computation
  // would compute.  However, the choice of fusion kind dictates codegen
  // strategy for the backend.
  //
  // To generate code for a kFusion HloInstruction, most backends do something
  // like the following:
  //
  // 1) Identify the "primary" HloInstruction of the fused computation.
  // 2) Emit code that does the work of the primary node, creating its inputs
  //    and transforming its outputs as specified by the fused computation.
  //
  // In step (2), the code emitted is usually similar to the code that would be
  // emitted for an *unfused* version of the primary node, except that
  //
  //  - when the primary node reads an element of one of its operands, instead
  //    of loading the value from memory, it *computes* the value based on the
  //    contents of the fused computation.
  //  - when the primary node outputs a value, instead of storing it to memory,
  //    it forwards the value to its users, which then perform additional
  //    computations before the value is finally stored to memory at the root of
  //    the fusion node.
  //
  // An HloInstruction's FusionKind helps us find the kFusion instruction's
  // primary node, and can also affect how we generate code in step (2).
  //
  //  - kInput: The primary node is the root of the fused instruction.
  //
  //  - kOutput: The primary node is not the root of the fused instruction.
  //    This fusion kind requires that one operand buffer of the fusion
  //    instruction be able to alias the output buffer.  This constraint is
  //    usually enough to let backends find the primary node unambiguously.
  //
  //  - kLoop: The primary node is the root of the fused computation, but,
  //    unlike in input fusion, we prescribe a specific implementation for
  //    codegen.  Rather than generating code that looks like the code we'd emit
  //    for an unfused version of the primary/root node, we emit code that
  //    generates one element of the root at a time.
  //
  //  - kCustom: Custom category for backend-specific fusions that don't fit
  //    into the above patterns.
  //
  // Not all backends support all fusion kinds, and given a particular fused
  // computation, it's not in general safe to change its fusion kind.  Creation
  // of fusion nodes is always backend-specific.
  //
  // For elementwise ops (e.g. kAdd), most backends would emit a
  // one-element-at-a-time implementation for the unfused version, so loop
  // fusion and input fusion are probably equivalent if the root node is
  // elementwise.  They're not necessarily equivalent e.g. for kReduce, where an
  // implementation might emit something more sophisticated for an unfused or
  // input-fusion reduce, but will emit the naive code that reduces one element
  // at a time for loop fusion with a reduce as the root.
  //
  // Another way to think of loop fusion is that it's equivalent to input
  // fusion, but where the root node is an implicit identity node, whose
  // unfused implementation is "read one element, write one element".
  //
  // TODO(b/79869434): This categorization scheme is not great.  For one thing,
  // input and loop fusion are basically the same thing: There is no reason for
  // the HLO to encode backend-specific decisions about how e.g. a reduce that's
  // the root of a fusion should be lowered.  In addition, this scheme as
  // written doesn't work for multi-output fusion, where the primary node is
  // never actually the root (which is a kTuple instruction that gathers the
  // multiple outputs of the fusion).
  enum class FusionKind {
    kLoop,
    kInput,
    kOutput,
    kCustom,
  };

  virtual ~HloInstruction();

  // Creates an instruction from the given proto. Arguments:
  //
  //   proto: the proto to convert from.
  //   instruction_map: a map from instruction id to HloInstruction*. This map
  //     must contain all operands of the newly constructed instruction.
  //   computation_map: a map from computation id to HloComputation*. This map
  //     must contain all computations which the newly constructed instruction
  //     calls.
  static StatusOr<std::unique_ptr<HloInstruction>> CreateFromProto(
      const HloInstructionProto& proto,
      const absl::flat_hash_map<int64, HloInstruction*>& instruction_map,
      const absl::flat_hash_map<int64, HloComputation*>& computation_map);

  // Creates a parameter-retrieving instruction.
  static std::unique_ptr<HloInstruction> CreateParameter(int64 parameter_number,
                                                         const Shape& shape,
                                                         const string& name);

  // Creates a literal constant instruction.
  static std::unique_ptr<HloInstruction> CreateConstant(Literal literal);

  // Creates an Iota instruction.
  static std::unique_ptr<HloInstruction> CreateIota(const Shape& shape,
                                                    int64 iota_dimension);

  // Creates a get tuple element instruction.
  static std::unique_ptr<HloInstruction> CreateGetTupleElement(
      const Shape& shape, HloInstruction* operand, int64 index);

  // Creates a trace instruction that logs the input operand in the computation.
  static std::unique_ptr<HloInstruction> CreateTrace(const string& tag,
                                                     HloInstruction* operand);

  // Creates a random number generation instruction that fills a shape with
  // random numbers from a given distribution.
  static std::unique_ptr<HloInstruction> CreateRng(
      const Shape& shape, RandomDistribution distribution,
      absl::Span<HloInstruction* const> parameters);

  // Creates a unary instruction (one operand).
  // Precondition: opcode must be a legitimate unary operation.
  static std::unique_ptr<HloInstruction> CreateUnary(const Shape& shape,
                                                     HloOpcode opcode,
                                                     HloInstruction* operand);

  // Creates a binary instruction (two operands).
  // Precondition: opcode must be a legitimate binary operation.
  static std::unique_ptr<HloInstruction> CreateBinary(const Shape& shape,
                                                      HloOpcode opcode,
                                                      HloInstruction* lhs,
                                                      HloInstruction* rhs);

  // Creates a ternary instruction (three operands).
  // Precondition: opcode must be a legitimate ternary operation.
  static std::unique_ptr<HloInstruction> CreateTernary(const Shape& shape,
                                                       HloOpcode opcode,
                                                       HloInstruction* lhs,
                                                       HloInstruction* rhs,
                                                       HloInstruction* ehs);

  // Creates a variadic instruction (variable number of operands).
  // Precondition: opcode must be a legitimate variadic operation.
  static std::unique_ptr<HloInstruction> CreateVariadic(
      const Shape& shape, HloOpcode opcode,
      absl::Span<HloInstruction* const> operands);

  // Creates a map instruction, where the computation (given by the handle) is
  // applied element-wise to every element in operands (across the operands,
  // at a given index)
  static std::unique_ptr<HloInstruction> CreateMap(
      const Shape& shape, absl::Span<HloInstruction* const> operands,
      HloComputation* map_computation);

  // Creates a convolution op, where rhs is the convolutional filter
  // and window describes how the filter is applied to lhs.
  static std::unique_ptr<HloInstruction> CreateConvolve(
      const Shape& shape, HloInstruction* lhs, HloInstruction* rhs,
      int64 feature_group_count, const Window& window,
      const ConvolutionDimensionNumbers& dimension_numbers,
      const PrecisionConfig& precision_config);

  // Creates an FFT op, of the type indicated by fft_type.
  static std::unique_ptr<HloInstruction> CreateFft(
      const Shape& shape, HloInstruction* operand, FftType fft_type,
      absl::Span<const int64> fft_length);

  // Creates a dot op with operands 'lhs' and 'rhs' with contracting and batch
  // dimensions specified in 'dimension_numbers'.
  static std::unique_ptr<HloInstruction> CreateDot(
      const Shape& shape, HloInstruction* lhs, HloInstruction* rhs,
      const DotDimensionNumbers& dimension_numbers,
      const PrecisionConfig& precision_config);

  // Creates a reduce-precision op, where operand is the data to reduce in
  // precision, and exponent_bits and mantissa_bits describe the precision to
  // reduce it to.
  static std::unique_ptr<HloInstruction> CreateReducePrecision(
      const Shape& shape, HloInstruction* operand, const int exponent_bits,
      const int mantissa_bits);

  // Creates a cross replica reduction op.
  //
  // `reduction_computation`: the reduction function.
  //
  // `replica_groups`: each ReplicaGroup contains a list of replica id. If
  // empty, all replicas belong to one group in the order of 0 - (n-1).
  // Allreduce will be applied within subgroups.
  // For example, we have 4 replicas, then replica_groups={{0,2},{1,3}} means,
  // replica 0 and 2 are in subgroup 0, replica 1 and 3 are in subgroup 1.
  //
  // `all_reduce_id`: for Allreduce nodes from different modules, if they have
  // the same all_reduce_id, they will be 'Allreduce'd. If empty, Allreduce will
  // not be applied cross modules.
  //
  // TODO(b/79737069): Rename this to AllReduce.
  static std::unique_ptr<HloInstruction> CreateCrossReplicaSum(
      const Shape& shape, absl::Span<HloInstruction* const> operands,
      HloComputation* reduce_computation,
      const std::vector<ReplicaGroup>& replica_groups,
      absl::string_view barrier, const absl::optional<int64>& all_reduce_id);

  // This op handles the communication of an Alltoall operation. On each core,
  // the operands are N ops in the same shape, where N is the number of cores
  // participating the Alltoall. Then the N operands are scattered to N cores,
  // e.g., the ith operand is sent to the ith core. Then each core gathers the
  // received data into a tuple.
  //
  // - `replica_groups`: each ReplicaGroup contains a list of replica id. If
  // empty, all replicas belong to one group in the order of 0 - (n-1). Alltoall
  // will be applied within subgroups in the specified order. For example,
  // replica groups = {{1,2,3},{4,5,0}} means, an Alltoall will be applied
  // within replica 1, 2, 3, and in the gather phase, the received blocks will
  // be concatenated in the order of 1, 2, 3; another Alltoall will be applied
  // within replica 4, 5, 0, and the concatenation order is 4, 5, 0.
  static std::unique_ptr<HloInstruction> CreateAllToAll(
      const Shape& shape, absl::Span<HloInstruction* const> operands,
      const std::vector<ReplicaGroup>& replica_groups);

  // Creates a communitation instructions that permutes data cross replicas.
  // Data is sent/received according to the (source_replica_id,
  // target_replica_id) pairs in `source_target_pairs`. If a replica id is not a
  // target_replica_id in any pair, the output on that replica is a tensor
  // conssits of 0(s) in `shape`.
  static std::unique_ptr<HloInstruction> CreateCollectivePermute(
      const Shape& shape, HloInstruction* operand,
      const std::vector<std::pair<int64, int64>>& source_target_pairs);

  // Creates a conversion instruction, where operand is the data to convert and
  // shape is the target shape for the conversion.
  static std::unique_ptr<HloInstruction> CreateConvert(const Shape& shape,
                                                       HloInstruction* operand);

  // Creates a bitcast conversion instruction, where operand is the data to
  // convert and shape is the target shape for the conversion.
  static std::unique_ptr<HloInstruction> CreateBitcastConvert(
      const Shape& shape, HloInstruction* operand);

  // Creates an infeed instruction, which reads data of the given shape from the
  // Infeed interface of the device. infeed_shape is the shape of the data
  // received from the infeed *not* the shape of the infeed instruction which
  // is a tuple containing the infeed_shape and the TOKEN.
  static std::unique_ptr<HloInstruction> CreateInfeed(
      const Shape& infeed_shape, HloInstruction* token_operand,
      const string& config);

  // Creates an outfeed instruction, which outputs data. outfeed_shape is the
  // shape of the data being outfed *not* the shape of the outfeed instruction
  // which is a TOKEN.
  static std::unique_ptr<HloInstruction> CreateOutfeed(
      const Shape& outfeed_shape, HloInstruction* operand,
      HloInstruction* token_operand, absl::string_view outfeed_config);

  // Creates an asynchronous send instruction with the given channel id, which
  // initiates sending the operand data to a unique receive instruction in
  // another computation that has the same channel id. If is_host_transfer is
  // true, then this Send operation transfers data to the host.
  static std::unique_ptr<HloInstruction> CreateSend(
      HloInstruction* operand, HloInstruction* token, int64 channel_id,
      bool is_host_transfer = false);

  // Blocks until data transfer for the Send instruction (operand) is complete.
  // The operand must be kSend.
  static std::unique_ptr<HloInstruction> CreateSendDone(
      HloInstruction* operand, bool is_host_transfer = false);

  // Creates an asynchronous receive instruction with the given channel id,
  // which allocates resources to receive data of the given shape from a unique
  // send instruction in another computation that has the same channel id.  If
  // is_host_transfer is true, then this Send operation transfers data from the
  // host.
  static std::unique_ptr<HloInstruction> CreateRecv(
      const Shape& shape, HloInstruction* token, int64 channel_id,
      bool is_host_transfer = false);

  // Blocks until data transfer for the Recv instruction (operand) is complete
  // and returns the receive buffer. The operand must be kRecv.
  static std::unique_ptr<HloInstruction> CreateRecvDone(
      HloInstruction* operand, bool is_host_transfer = false);

  // Creates a slice instruction, where the operand is sliced by the given
  // start/limit indices.
  static std::unique_ptr<HloInstruction> CreateSlice(
      const Shape& shape, HloInstruction* operand,
      absl::Span<const int64> start_indices,
      absl::Span<const int64> limit_indices, absl::Span<const int64> strides);

  // Creates a slice instruction, where the first operand is sliced by
  // start indices specified in the second operand, and by size specified in
  // 'slice_sizes'.
  static std::unique_ptr<HloInstruction> CreateDynamicSlice(
      const Shape& shape, HloInstruction* operand,
      HloInstruction* start_indices, absl::Span<const int64> slice_sizes);

  // Creates a dynamic update slice instruction, which updates a slice
  // of 'operand' with 'update' and 'start_indices'.
  static std::unique_ptr<HloInstruction> CreateDynamicUpdateSlice(
      const Shape& shape, HloInstruction* operand, HloInstruction* update,
      HloInstruction* start_indices);

  // Creates a concatenate instruction, where the operands are concatenated on
  // the provided dimension.
  static std::unique_ptr<HloInstruction> CreateConcatenate(
      const Shape& shape, absl::Span<HloInstruction* const> operands,
      int64 dimension);

  // Creates a reduce instruction, where the computation (given by the handle)
  // is applied successively to every element in operand. For example, let f be
  // the function to apply, which takes 2 arguments, an accumulator and the
  // current value. Let init be an initial value (which is normally chosen to be
  // the identity element for f, e.g. 0 if f is addition).
  // Then the reduce HLO will compute:
  // f(f(init, value0), value1), ...)
  static std::unique_ptr<HloInstruction> CreateReduce(
      const Shape& shape, HloInstruction* operand, HloInstruction* init_value,
      absl::Span<const int64> dimensions_to_reduce,
      HloComputation* reduce_computation);

  // A more general, multiple-argument version of the above.
  // The function to apply, f, now takes N arguments:
  // [accumulator0, accumulator1, ..., accumulatorN, value0, value1, ...,
  // init_valueN], and returns an N-tuple. The performed computation is (for
  // commutative and associative f operators) equivalent to:
  //
  // f_1 = f(init0, ...  initN, input0.value0, ..., inputN.value0)
  // f_2 = f(f_1.tuple_element(0), ..., f_1.tuple_element(N), input0.value1,
  // ..., inputN.value1)
  // ...
  // TODO(b/112040122): Add support to this in HLO passes and in backends.
  static std::unique_ptr<HloInstruction> CreateReduce(
      const Shape& shape, absl::Span<HloInstruction* const> operands,
      absl::Span<HloInstruction* const> init_values,
      absl::Span<const int64> dimensions_to_reduce,
      HloComputation* reduce_computation);

  // Creates a reduce-window instruction, where the computation (given
  // by the handle) is applied window-wise at each valid window
  // position in the operand.
  static std::unique_ptr<HloInstruction> CreateReduceWindow(
      const Shape& shape, HloInstruction* operand, HloInstruction* init_value,
      const Window& window, HloComputation* reduce_computation);

  // Creates a batch-norm-training instruction.
  static std::unique_ptr<HloInstruction> CreateBatchNormTraining(
      const Shape& shape, HloInstruction* operand, HloInstruction* scale,
      HloInstruction* offset, float epsilon, int64 feature_index);

  // Creates a batch-norm-inference instruction.
  static std::unique_ptr<HloInstruction> CreateBatchNormInference(
      const Shape& shape, HloInstruction* operand, HloInstruction* scale,
      HloInstruction* offset, HloInstruction* mean, HloInstruction* variance,
      float epsilon, int64 feature_index);

  // Creates a batch-norm-grad instruction.
  static std::unique_ptr<HloInstruction> CreateBatchNormGrad(
      const Shape& shape, HloInstruction* operand, HloInstruction* scale,
      HloInstruction* mean, HloInstruction* variance,
      HloInstruction* grad_output, float epsilon, int64 feature_index);

  // Creates a scatter computation that scatters the `source` array to the
  // selected indices of each window.
  static std::unique_ptr<HloInstruction> CreateSelectAndScatter(
      const Shape& shape, HloInstruction* operand, HloComputation* select,
      const Window& window, HloInstruction* source, HloInstruction* init_value,
      HloComputation* scatter);

  // Creates a broadcast instruction.
  static std::unique_ptr<HloInstruction> CreateBroadcast(
      const Shape& shape, HloInstruction* operand,
      absl::Span<const int64> broadcast_dimensions);

  // Creates a sequence of instructions that performs an explicit broadcast of
  // the operand to the target shape.
  //
  // Interior HLOs are passed to "adder", but the "root" HLO of the sequence is
  // returned as a unique_ptr for API consistency with other factory methods in
  // this interface.
  //
  // TODO(b/72173833) Ideally HloComputations would always be present, and so
  // the adder being passed by the caller would not be necessary.
  static std::unique_ptr<HloInstruction> CreateBroadcastSequence(
      const Shape& output_shape, HloInstruction* operand,
      const std::function<HloInstruction*(std::unique_ptr<HloInstruction>)>&
          adder);

  // Creates a pad instruction, where the operand is padded on the edges and
  // between the elements with the given padding value.
  static std::unique_ptr<HloInstruction> CreatePad(
      const Shape& shape, HloInstruction* operand,
      HloInstruction* padding_value, const PaddingConfig& padding_config);

  // Creates a reshape instruction, where the operand is flattened row-major
  // order and then reshaped to the given result shape.
  static std::unique_ptr<HloInstruction> CreateReshape(const Shape& shape,
                                                       HloInstruction* operand);

  // Creates a transpose instruction which permutes the operand dimensions.
  static std::unique_ptr<HloInstruction> CreateTranspose(
      const Shape& shape, HloInstruction* operand,
      absl::Span<const int64> dimensions);

  // Creates a sort op, with a keys operand, and optional values operands.
  static std::unique_ptr<HloInstruction> CreateSort(
      const Shape& shape, int64 dimension, HloInstruction* keys,
      absl::Span<HloInstruction* const> values = {});

  // Creates a while instruction, given a condition computation, a body
  // computation, and the initial value for the input of the computations. For
  // example, shape: S32, condition: i -> i < 1000, body: i -> i * 2, init: 1
  // corresponds to the C code below.
  // int32 i = 1; int32 result = while(i < 1000) { i = i * 2 }
  static std::unique_ptr<HloInstruction> CreateWhile(const Shape& shape,
                                                     HloComputation* condition,
                                                     HloComputation* body,
                                                     HloInstruction* init);

  static std::unique_ptr<HloInstruction> CreateConditional(
      const Shape& shape, HloInstruction* pred,
      HloInstruction* true_computation_arg, HloComputation* true_computation,
      HloInstruction* false_computation_arg, HloComputation* false_computation);

  static std::unique_ptr<HloInstruction> CreateGather(
      const Shape& shape, HloInstruction* operand,
      HloInstruction* start_indices,
      const GatherDimensionNumbers& gather_dim_numbers,
      absl::Span<const int64> slice_sizes);

  static std::unique_ptr<HloInstruction> CreateScatter(
      const Shape& shape, HloInstruction* operand,
      HloInstruction* scatter_indices, HloInstruction* updates,
      HloComputation* update_computation,
      const ScatterDimensionNumbers& scatter_dim_numbers);

  // Creates a kDomain instruction which delimits an HLO domain which have
  // the provided user and operand side metadata.
  static std::unique_ptr<HloInstruction> CreateDomain(
      const Shape& shape, HloInstruction* operand,
      std::unique_ptr<DomainMetadata> operand_side_metadata,
      std::unique_ptr<DomainMetadata> user_side_metadata);

  // Creates a fusion instruction. A fusion instruction contains one or more
  // fused instructions forming an expression with a single root
  // "fused_root". Additional instructions can be added to the fusion
  // instruction with the method FuseInstruction.
  static std::unique_ptr<HloInstruction> CreateFusion(
      const Shape& shape, FusionKind fusion_kind, HloInstruction* fused_root);

  static std::unique_ptr<HloInstruction> CreateFusion(
      const Shape& shape, FusionKind fusion_kind,
      absl::Span<HloInstruction* const> operands,
      HloComputation* fusion_computation);

  // Creates a call instruction that applies the given computation on the given
  // operands. "shape" is the resultant shape.
  static std::unique_ptr<HloInstruction> CreateCall(
      const Shape& shape, absl::Span<HloInstruction* const> operands,
      HloComputation* computation);

  // Creates a custom call instruction that applies the given custom call target
  // to the given operands. "opaque" can be an arbitrary string with a
  // backend-specific interpretation. "shape" is the resultant shape.
  static std::unique_ptr<HloInstruction> CreateCustomCall(
      const Shape& shape, absl::Span<HloInstruction* const> operands,
      absl::string_view custom_call_target, absl::string_view opaque = "");

  // Overload which constrains the layouts of the operand and result. 'shape'
  // and 'operand_shapes_with_layout' must have layouts.
  // 'operand_shapes_with_layout' must have a compatible element for each
  // operand.
  static std::unique_ptr<HloInstruction> CreateCustomCall(
      const Shape& shape, absl::Span<HloInstruction* const> operands,
      absl::string_view custom_call_target,
      absl::Span<const Shape> operand_shapes_with_layout,
      absl::string_view opaque = "");

  // Creates a tuple instruction with the given elements. This is a convenience
  // wrapper around CreateVariadic.
  static std::unique_ptr<HloInstruction> CreateTuple(
      absl::Span<HloInstruction* const> elements);

  // Creates a reverse instruction, which reverses the order of the elements
  // in the specified dimensions.
  static std::unique_ptr<HloInstruction> CreateReverse(
      const Shape& shape, HloInstruction* operand,
      absl::Span<const int64> dimensions);

  // Creates a Afterall instruction used for joining or creating new values of
  // token type which thread through side-effecting operations. Operands must
  // all be tokens, and there must be at least one operand.
  static std::unique_ptr<HloInstruction> CreateAfterAll(
      absl::Span<HloInstruction* const> operands);

  // Creates an AfterAll instruction which creates a token type out of thin air
  // (no operands). This is a separate method from CreateAfterAll to facility
  // the removal of operand-less AfterAll instructions.
  // TODO(b/110532604): Remove this capability of creating a token from nothing
  // when we plumb a primordial token from the entry computation.
  static std::unique_ptr<HloInstruction> CreateToken();

  // Returns the opcode for this instruction.
  HloOpcode opcode() const { return opcode_; }

  // Returns true if this instruction has a side effect, irrespective of whether
  // any called computations may contain an instruction with side effects.
  bool HasSideEffectNoRecurse() const;

  // Returns true if this instruction has a side effect. An instruction has a
  // side effect if it uses certain opcodes or calls a computation with a side
  // effect.
  bool HasSideEffect() const;

  // Returns the result shape of this instruction.
  const Shape& shape() const;

  // Returns the (mutable) result shape of this instruction.
  Shape* mutable_shape() { return &shape_; }

  // Returns the ith operand to this instruction.
  const HloInstruction* operand(int64 i) const;

  // Returns the ith operand to this instruction.
  HloInstruction* mutable_operand(int64 i);

  // Returns the number of operands to this instruction.
  int64 operand_count() const { return operands_.size(); }

  // Returns the vector of operands of this instruction.
  using InstructionVector = absl::InlinedVector<HloInstruction*, 2>;
  const InstructionVector& operands() const { return operands_; }

  // Returns the vector of unique operands, in the same order they are found
  // within the operand vector.
  InstructionVector unique_operands() const;

  // Returns the index of 'target' in the operands sequence.
  // Precondition: target must be an operand (or a fatal error will occur).
  int64 operand_index(const HloInstruction* target) const;

  // Returns the number of users of this instruction.
  int64 user_count() const { return users_.size(); }

  // Returns the users of this instruction.
  const std::vector<HloInstruction*>& users() const { return users_; }

  // Returns true if this instruction is a user of 'instruction'.
  bool IsUserOf(const HloInstruction* instruction) const {
    return ContainsKey(instruction->user_set_, this);
  }

  // Adds a control dependency from this instruction to the given
  // instruction. This instruction becomes a control predecessor of
  // 'instruction', and 'instruction' becomes a control successor of this
  // instruction. Returns an error status if either of the given instructions
  // does not belong to the same computation.
  //
  // This is used to enforce an additional ordering requirement that is not
  // captured by normal data dependencies, such as ordering among Send or Recv
  // operations to avoid deadlock.
  Status AddControlDependencyTo(HloInstruction* instruction);

  // Removes a previously added control dependency from this instruction to
  // 'instruction'.
  Status RemoveControlDependencyTo(HloInstruction* instruction);

  // Drops all control predecessors and successors from this HLO instruction.
  Status DropAllControlDeps();

  // Copies the control predecessors and successors on this HLO instruction to
  // `inst`.  Does not do a deep copy so this makes sense only if `inst` and
  // this HLO are in the same module.
  //
  // Depending on the use cases we see in practice, in the future we may
  // consider folding the logic here into Clone, CloneWithNewOperands and
  // ReplaceAllUsesWith by treating control dependencies like data dependencies.
  Status CopyAllControlDepsFrom(const HloInstruction* inst);

  // Returns the set of control predecessors (successors) of this
  // instruction. Control predecessors (successors) must execute before (after)
  // the current instruction.
  const std::vector<HloInstruction*>& control_predecessors() const {
    return control_predecessors_;
  }
  const std::vector<HloInstruction*>& control_successors() const {
    return control_successors_;
  }

  // Returns true if "other" performs the same computation as this instruction.
  bool Identical(
      const HloInstruction& other,
      const std::function<bool(const HloInstruction*, const HloInstruction*)>&
          eq_operands = std::equal_to<const HloInstruction*>(),
      const std::function<bool(const HloComputation*, const HloComputation*)>&
          eq_computations = std::equal_to<const HloComputation*>(),
      bool layout_sensitive = true) const {
    // An instruction is always identical to itself.
    if (this == &other) {
      return true;
    }

    // Identical instruction must have the same opcode, shape, and identical
    // operands.
    if (opcode() != other.opcode()) {
      return false;
    }
    if (!(layout_sensitive ? ShapeUtil::Equal(shape(), other.shape())
                           : ShapeUtil::Compatible(shape(), other.shape()))) {
      return false;
    }
    if (operands().size() != other.operands().size()) {
      return false;
    }

    // Use an explicit loop rather than ContainerEquals, because copying around
    // std::functions may be too expensive in some cases.
    for (size_t i = 0; i < operands().size(); ++i) {
      if (!eq_operands(operand(i), other.operand(i))) {
        return false;
      }
    }

    if (backend_config_ != other.backend_config_) {
      return false;
    }

    return IdenticalSlowPath(other, eq_computations);
  }

  // Returns whether the instruction has a constant operand.
  bool HasConstantOperand() const;

  // Replaces the use of this instruction in "user" with "new_producer". Note
  // that there might be multiple uses of this instruction in "user"; all will
  // be replaced.
  //
  // If user is a fusion instruction, this function will remove any duplicated
  // operands of it which could be created due to this replacement.
  Status ReplaceUseWith(HloInstruction* user, HloInstruction* new_producer);

  // Replaces the specified operand with new_operand.
  //
  // This function does NOT remove duplicated operands even if this instruction
  // is a fusion, so that the existing operand numbers do not change.
  Status ReplaceOperandWith(int64 operand_no, HloInstruction* new_operand);

  // Replaces all uses of this instruction with the new producer. If
  // new_producer is a user of this instruction then new_producer remains a use
  // of this instruction to avoid introducing cycles into the graph.
  //
  // If this instruction is the root of its computation, sets the computation's
  // root to new_producer.
  //
  // If a user is a fusion instruction, this function will remove any duplicated
  // operands of it which could be created due to this replacement.
  Status ReplaceAllUsesWith(HloInstruction* new_producer);

  // Performs a postorder DFS visit using this node as the root. If
  // call_finish_visit is true, then DfsHloVisitor::FinishVisit is called when
  // complete. If ignore_control_predecessors is true, instructions only
  // reachable via control dependencies will not be visited, and the postorder
  // will not take control dependencies into account. It is as if the control
  // dependencies didn't exist in the graph at all.
  template <typename HloInstructionPtr>
  Status Accept(DfsHloVisitorBase<HloInstructionPtr>* visitor,
                bool call_finish_visit = true,
                bool ignore_control_predecessors = false);
  Status Accept(ConstDfsHloVisitor* visitor, bool call_finish_visit = true,
                bool ignore_control_predecessors = false) const {
    return const_cast<HloInstruction*>(this)->Accept(
        visitor, call_finish_visit, ignore_control_predecessors);
  }

  // Same as Accept() above, but the order of operand and control predecessor
  // visitation is determined by the given operand order; if compare(A, B) ==
  // true, A is visited before B.
  using CompareFunction =
      std::function<bool(const HloInstruction*, const HloInstruction*)>;
  Status AcceptWithOperandOrder(DfsHloVisitor* visitor,
                                const CompareFunction& operand_order,
                                bool call_finish_visit = true);

  // Performs a postorder DFS visit using this node as the root. Calls the given
  // visitor function at each instruction.
  Status Accept(const std::function<Status(HloInstruction*)>& visitor_func);
  Status Accept(
      const std::function<Status(const HloInstruction*)>& visitor_func) const;

  // Visits all instructions rooted at this instruction using the given visitor
  // in the given order. 'order' must contain at least the set of instructions
  // rooted at this node (ie, those accessible from a DFS traversal from this
  // instruction). Instructions contained in 'order' which are not in the set of
  // instructions rooted at this node are ignored. 'order' must also be a valid
  // topological sort of these instructions (defs appear before uses) though
  // need not be a DFS post-order.
  Status AcceptOrdered(DfsHloVisitor* visitor,
                       const std::vector<const HloInstruction*>& order);

  // Visit this instruction and only this instruction with the given visitor.
  template <typename HloInstructionPtr>
  Status Visit(DfsHloVisitorBase<HloInstructionPtr>* visitor);

  // Returns the first non-GetTupleElement ancestor instruction of 'hlo'.
  // If the first non-GTE ancestor is tuple-shaped, populates 'index' with the
  // (possibly nested) tuple indices used on the path from ancestor to 'hlo'.
  std::pair<const HloInstruction*, ShapeIndex> LatestNonGteAncestorAndIndex()
      const;

  std::pair<HloInstruction*, ShapeIndex> LatestNonGteAncestorAndIndex() {
    auto rv =
        const_cast<const HloInstruction*>(this)->LatestNonGteAncestorAndIndex();
    return {const_cast<HloInstruction*>(rv.first), rv.second};
  }

  // Same as LatestNonGteAncestorAndIndex, but just returns the HloInstruction.
  const HloInstruction* LatestNonGteAncestor() const;

  HloInstruction* LatestNonGteAncestor() {
    return const_cast<HloInstruction*>(
        const_cast<const HloInstruction*>(this)->LatestNonGteAncestor());
  }

  // Gets/sets the to_apply HloComputation for Call, Map, Reduce, etc.
  // The setter should only be called by HloModule or HloComputation methods.
  //
  // Precondition: The instruction has a valid to_apply_ field.
  HloComputation* to_apply() const;
  void set_to_apply(HloComputation* to_apply);

  // Gets/sets the while_condition or while_body HloComputation for While. The
  // setters should only be called by HloModule or HloComputation methods.
  //
  // Precondition: The instruction is a While instruction.
  HloComputation* while_condition() const;
  HloComputation* while_body() const;
  void set_while_condition(HloComputation* while_condition);
  void set_while_body(HloComputation* while_body);

  // Gets/sets the true and false HloComputation for Conditional. The setters
  // should only be called by HloModule or HloComputation methods.
  //
  // Precondition: The instruction is a Conditional instruction.
  HloComputation* true_computation() const;
  HloComputation* false_computation() const;
  void set_true_computation(HloComputation* true_computation);
  void set_false_computation(HloComputation* false_computation);

  // Returns a string for the signature of this instruction if considered as a
  // function, e.g. the signature of an F32 add is (F32, F32) -> F32.
  string SignatureString() const;

  // Returns a debugging string that represents this instruction.
  //
  // (We express the default options using an overload rather than a default
  // param because gdb ignores default params, but does resolve overloads.)
  //
  // TODO(b/73348663): Make ToString() adaptive to the size of the string by
  // default, backing off on providing full information for very large strings,
  // or provide a different name for a ToString-like function that does that.
  string ToString() const { return ToString(HloPrintOptions()); }
  string ToString(const HloPrintOptions& options) const;

  // Components of the ToString() representation:

  // Returns a string representation of the operand list.
  string OperandsToString(const HloPrintOptions& options) const;

  // Returns string representation of op-specific attributes.
  std::vector<string> ExtraAttributesToString(
      const HloPrintOptions& options) const;

  // As ToString, but returns a shorter string.
  string ToShortString() const;

  // Returns a serialized representation of this instruction.
  virtual HloInstructionProto ToProto() const;

  // Returns a category for the HLO. This could be something like "convolution"
  // or "elementwise".
  virtual string ToCategory() const;

  // Returns a logging instruction, if the output of this instruction is logged.
  //
  // Postcondition: retval == nullptr || retval->opcode() == HloOpcode::kTrace
  HloInstruction* tracing() const;
  void set_tracing(HloInstruction* trace_instruction);

  // Returns true if this instruction is fused, ie contained within a fusion
  // instruction.
  bool IsFused() const;

  // Returns true if this instruction can be legally fused into a fusion
  // instruction.
  bool IsFusible() const;

  // Returns the sharding applied to this operator.
  // REQUIRES: has_sharding() is true.
  const HloSharding& sharding() const {
    CHECK(has_sharding());
    return *sharding_;
  }
  std::shared_ptr<const HloSharding> sharding_ptr() const { return sharding_; }

  // Returns the sharding applied to this operator, or default_ if none exists.
  const HloSharding& sharding_or_default(const HloSharding& default_) const {
    return sharding_ ? *sharding_ : default_;
  }
  // Returns the sharding unique device, if any.
  absl::optional<int64> sharding_unique_device() const {
    if (sharding_ == nullptr) {
      return absl::optional<int64>();
    }
    return sharding_->UniqueDevice();
  }
  // Sets the sharding of this operator. Should only be called by HloModule or
  // HloComputation methods.
  void set_sharding(const HloSharding& sharding) {
    sharding_ = std::make_shared<const HloSharding>(sharding);
  }
  void set_sharding(std::shared_ptr<const HloSharding> sharding) {
    sharding_ = std::move(sharding);
  }
  void set_single_sharding(const HloSharding& sharding);
  // Sets a sharding that assigns the current instruction to device.
  void set_device_sharding(int64 device) {
    set_single_sharding(HloSharding::AssignDevice(device));
  }
  // Remove any sharding from this operator.
  void clear_sharding() { sharding_ = nullptr; }
  // Return true if this operator has a sharding assigned.
  bool has_sharding() const { return sharding_ != nullptr; }
  // Checks whether the instruction has compatible sharding with the other
  // instruction.
  bool has_compatible_sharding(const HloInstruction* other) const {
    if (!has_sharding()) {
      return !other->has_sharding();
    }
    return other->has_sharding() ? sharding() == other->sharding() : false;
  }

  // When creating a new instruction which either replaces, or shifts up (kCopy
  // insertion case), another instruction, we need to make sure the certain
  // properties of the new instruction are copied into the derived one. As of
  // today, the metadata and sharding will be propagated to the derived
  // instruction.
  void SetupDerivedInstruction(HloInstruction* derived_instruction) const;

  // Clones the HLO instruction. The clone will have the same opcode, shape, and
  // operands. After creation the clone has no uses. "this" (the instruction
  // cloned from) is not changed. Suffix is the string to append to the name of
  // the instruction to form the name of the cloned instruction.
  // Ignores the control predecessors and successors of this HLO instruction.
  std::unique_ptr<HloInstruction> Clone(
      const string& suffix = "clone", HloCloneContext* context = nullptr) const;

  // Clones the HLO instruction as above but with new shape and operands.
  std::unique_ptr<HloInstruction> CloneWithNewOperands(
      const Shape& shape, absl::Span<HloInstruction* const> new_operands,
      HloCloneContext* context = nullptr) const;

  // Returns the computations this instruction directly calls (if any).
  const std::vector<HloComputation*>& called_computations() const {
    return called_computations_;
  }

  // Replaces all called computations based on a map function. This is needed
  // when we clone hlo_computations and want to let the instructions to point
  // to the newly cloned nodes.
  void ReplaceCalledComputations(
      std::function<HloComputation*(HloComputation*)> map_function) {
    for (int64 i = 0; i < called_computations_.size(); ++i) {
      called_computations_[i] = map_function(called_computations_[i]);
    }
  }

  // Clears out the called computations.
  //
  // This is, in particular, necessary when inlining function bodies into their
  // caller. If there were side-effecting operations in the called computations,
  // the call itself is considered side-effecting and thus cannot be removed. By
  // clearing out the computations, we reflect the fact that all side-effecting
  // properties have been reflected in the caller, and make the call HLO
  // removable.
  void ClearCalledComputations() { called_computations_.clear(); }

  // Returns true if this instruction performs an elementwise operation on
  // `operand_idx`-th operand. An instruction is elementwise on an operand iff,
  // after performing necessary implicit broadcast
  // (cs/IrArray::EmitArrayElementAddress), to compute the output at index
  // {i_0,i_1,...,i_n}, the only element required from the operand (if any) is
  // the element at {i_0,i_1,...,i_n}.
  //
  // Note on performance: when this instruction is kFusion, this method, in the
  // worst case, scans all fused instructions. We could speed this up by
  // caching.
  bool IsElementwiseOnOperand(int64 operand_idx) const;

  // Returns true if this instruction is elementwise on all its operands.
  bool IsElementwise() const;

  // Returns true if this is an cross module all-reduce instrucion.
  bool IsCrossModuleAllReduce() const;

  // Returns true if this elementwise instruction implicitly broadcasts operand
  // `operand_idx`.
  //
  // Precondition: this instruction should be an elementwise operation.
  bool ImplicitlyBroadcastsOperand(int64 operand_idx) const;

  // Returns true if this instruction is binary and elementwise.
  bool IsElementwiseBinary() const;

  // Returns whether this instruction may reuse elements of its `i`th operand.
  bool ReusesOperandElements(int64 i) const {
    return OperandElementUse(i) == UseKind::kReuse;
  }

  // Returns the indices that the given operand appear in the operand list of
  // this instruction. Note that an instruction can use the same operand
  // multiple times.
  std::vector<int64> OperandIndices(const HloInstruction* operand) const;

  // Convenience helper for ShapeUtil::InsertedOrDeleted1SizedDimensions. If
  // this reshape merely inserts or deletes 1-sized dimensions, return the input
  // indices of the deleted dimensions and the output indices of the inserted
  // dimensions.
  //
  // Precondition: this op must be a reshape.
  std::tuple<bool, std::vector<int64>, std::vector<int64>>
  ReshapeMerelyInsertsOrDeletes1SizedDimensions() const;

  // Gets the string identifier for this instruction.
  const string& name() const { return name_; }

  // Sets the string identifier for this instruction. Name will be sanitized to
  // match the regexp "[a-zA-Z_][a-zA-Z0-9_.-]*".
  void SetAndSanitizeName(const string& name) {
    name_ = NameUniquer::GetSanitizedName(name);
  }

  // Use the given NameUniquer to select a unique name for the instruction based
  // on the instruction's existing name.
  void UniquifyName(NameUniquer* name_uniquer);

  // Set the unique id for this instruction to "id"
  void SetUniqueId(int id) {
    CHECK_EQ(unique_id_, -1);  // Should not be assigned already
    CHECK_GE(id, 0);
    unique_id_ = id;
  }

  // Return the unique ID assigned to this node via SetUniqueId (or -1
  // if no id has been assigned yet).
  int unique_id() const { return unique_id_; }

  // Returns the backend-specific configuration for how a backend should compile
  // this HLO. The meaning of the field is backend specific. Not for use before
  // or during general HLO optimization, since HLO optimizations do not preserve
  // this field and they cannot interpret it due to its meaning being backend
  // specific.
  //
  // ConfigProto should be a protobuf Message type.
  template <typename ConfigProto>
  StatusOr<ConfigProto> backend_config() const {
    ConfigProto proto;
    TF_RETURN_IF_ERROR(GetBackendConfigInternal(&proto));
    return std::move(proto);
  }
  Status set_backend_config(const tensorflow::protobuf::Message& proto);

  // Getter/setter for raw JSON-encoded backend config.  Prefer the
  // functions above that deal in proto Messages where possible.
  const string& raw_backend_config_string() const { return backend_config_; }
  void set_raw_backend_config_string(string config_str) {
    backend_config_ = std::move(config_str);
  }

  // Returns a string representation of a proto in the format used by
  // raw_backend_config_string.
  //
  // This is morally equivalent to:
  //
  //   HloInstruction instr;
  //   TF_RETURN_IF_ERROR(instr.set_backend_config(proto));
  //   return instr.raw_backend_config_string();
  //
  static StatusOr<string> BackendConfigToRawString(
      const tensorflow::protobuf::Message& proto);

  // Returns the information used to tell the implementation information about
  // what sort of precision is requested. The meaning of the field is backend
  // specific. At the moment, it is only supported for kConvolution and kDot.
  // Transformations on one kDot or kConvolution to another will preserve this
  // information. Transformations to other HLOs will not preserve this
  // information but it is presumed that the alternate lowering is strictly
  // superior.
  // Precondition: opcode must be kConvolution or kDot.
  const PrecisionConfig& precision_config() const;

  // Sets the debug metadata for this instruction.
  void set_metadata(const OpMetadata& metadata) { metadata_ = metadata; }
  const OpMetadata& metadata() const { return metadata_; }

  // Set/get the computation containing this instruction. set_parent should only
  // be called by HloComputation methods which add/remove instructions to
  // computations.
  void set_parent(HloComputation* computation) { parent_ = computation; }
  const HloComputation* parent() const { return parent_; }
  HloComputation* parent() { return parent_; }

  // Returns the module for this instruction.
  HloModule* GetModule() const;

  // Returns whether we could assign input and output layouts to this
  // instruction to make it a bitcast.
  bool CouldBeBitcast() const;

  // Get/Set the number of partitions per outer dimension (in order, starting
  // with outer-most dimension first). Currently used by the parallel cpu
  // backend to partition HLOs into parallel tasks.
  //
  // TODO(b/62783254) Replace these methods with a more general way to
  // annotate HLOs with backend-specific information.
  const std::vector<int64>& outer_dimension_partitions() const {
    return outer_dimension_partitions_;
  }
  void set_outer_dimension_partitions(
      const std::vector<int64>& outer_dimension_partitions);

  // Old methods kept for smooth subclassing transition BEGIN.
  // TODO(b/80131774): Remove this code.

  // Delegates to HloBatchNormInstruction::feature_index.
  int64 feature_index() const;

  // Delegates to HloBatchNormInstruction::epsilon.
  float epsilon() const;

  // Delegates to HloFftInstruction::fft_type.
  FftType fft_type() const;

  // Delegates to HloFftInstruction::fft_length.
  const std::vector<int64>& fft_length() const;

  // Delegates to HloSendRecvInstruction::channel_id.
  int64 channel_id() const;

  // Returns the dimension sizes or numbers associated with this instruction.
  virtual const std::vector<int64>& dimensions() const {
    LOG(FATAL) << "Unimplemented method.";
  }
  virtual int64 dimensions(int64 index) const {
    LOG(FATAL) << "Unimplemented method.";
  }

  // Delegates to HloConcatenateInstruction::concatenate_dimension.
  int64 concatenate_dimension() const;

  // Returns whether this instruction does a rank-2 transposition.
  bool IsRank2Transpose() const;

  // Delegates to HloSliceInstruction::slice_start.
  int64 slice_starts(int64 dimension) const;
  const std::vector<int64>& slice_starts() const;

  // Delegates to HloSliceInstruction::slice_limits.
  int64 slice_limits(int64 dimension) const;
  const std::vector<int64>& slice_limits() const;

  // Delegates to HloSliceInstruction::slice_strides.
  int64 slice_strides(int64 dimension) const;
  const std::vector<int64>& slice_strides() const;

  // Returns the literal associated with this instruction.
  const Literal& literal() const;

  // Returns whether the instruction is a constant.
  bool IsConstant() const;

  // Delegate to HloConstantInstruction::RelayoutConstant.
  void RelayoutConstant(const Layout& new_layout,
                        const ShapeIndex& shape_index = {});

  // Delegates to HloTraceInstruction::TracingTag.
  string TracingTag() const;

  // Delegates to HloFusionInstruction::AddFusionOperand.
  HloInstruction* AddFusionOperand(HloInstruction* new_operand);

  // Delegates to HloFusionInstruction::MergeFusionInstruction.
  void MergeFusionInstruction(HloInstruction* instruction_to_merge);

  // Delegates to HloFusionInstruction::MergeFusionInstructionIntoMultiOutput.
  void MergeFusionInstructionIntoMultiOutput(
      HloInstruction* instruction_to_merge);

  // Delegates to HloFusionInstruction::FuseInstruction.
  HloInstruction* FuseInstruction(HloInstruction* instruction_to_fuse);

  // Delegates to HloFusionInstruction::FuseInstructionIntoMultiOutput.
  HloInstruction* FuseInstructionIntoMultiOutput(
      HloInstruction* instruction_to_fuse);

  // Delegates to HloFusionInstruction::fused_instruction.
  HloComputation* fused_instructions_computation() const;

  // Delegates to HloFusionInstruction::fused_expression_root.
  HloInstruction* fused_expression_root() const;

  // Delegates to HloFusionInstruction::fused_instructions.
  const tensorflow::gtl::iterator_range<UnwrappingIterator<
      std::list<std::unique_ptr<HloInstruction>>::const_iterator>>
  fused_instructions() const;

  const tensorflow::gtl::iterator_range<
      UnwrappingIterator<std::list<std::unique_ptr<HloInstruction>>::iterator>>
  fused_instructions();

  // Delegates to HloFusionInstruction::fused_instruction_count.
  int64 fused_instruction_count() const;

  // Delegates to HloFusionInstruction::fused_parameter.
  HloInstruction* fused_parameter(int64 parameter_number) const;

  // Delegates to HloFusionInstruction::fused_parameters.
  const std::vector<HloInstruction*>& fused_parameters() const;

  // Returns true if this instruction is a fusion instruction that generates
  // multiple outputs.
  const bool IsMultiOutputFusion() const;

  // Delegates to HloFusionInstruction::fusion_kind.
  FusionKind fusion_kind() const;

  // Delegates to HloFusionInstruction::set_fusion_kind.
  void set_fusion_kind(FusionKind kind);

  // Delegates to HloRngInstruction::random_distribution.
  RandomDistribution random_distribution() const;

  // Delegates to HloParameterInstruction::parameter_number.
  int64 parameter_number() const;

  // Delegates to HloGetTupleElementInstruction::tuple_index.
  int64 tuple_index() const;

  // Delegates to HloReducePrecisionInstruction::exponent_bits.
  int32 exponent_bits() const;

  // Delegates to HloReducePrecisionInstruction::mantissa_bits.
  int32 mantissa_bits() const;

  // Delegates to HloInfeedInstruction::infeed_config.
  string infeed_config() const;

  // Delegates to HloInfeedInstruction::set_infeed_config.
  void set_infeed_config(const string& config);

  // Returns the config for the Outfeed instruction.
  const string& outfeed_config() const;

  // Returns the shape for the Outfeed instruction.
  const Shape& outfeed_shape() const;

  // Delegates to HloCollectiveInstruction::replica_groups.
  const std::vector<ReplicaGroup>& replica_groups() const;

  // Delegates to HloCollectivePermuteInstruction::source_target_pairs.
  const std::vector<std::pair<int64, int64>>& source_target_pairs() const;

  // Delegates to HloAllReduceInstruction::cross_replica_sum_barrier.
  string cross_replica_sum_barrier() const;
  void set_cross_replica_sum_barrier(const string& barrier);

  // Delegates to HloAllReduceInstruction::all_reduce_id.
  absl::optional<int64> all_reduce_id() const;

  // Returns data on the window in a windowed operation such as
  // convolution.
  virtual const Window& window() const {
    LOG(FATAL) << "Unimplemented method.";
  }

  // Sets the window data in a windowed operation such as convolution.
  virtual void set_window(const Window& window) {
    LOG(FATAL) << "Unimplemented method.";
  }

  // Returns data on the dimension numbers used for a convolution operation,
  // which may be a kConvolution instruction or a kCustomCall that implements a
  // convolution.
  const ConvolutionDimensionNumbers& convolution_dimension_numbers() const;

  // Sets the convolution dimension numbers on this instruction.  In general you
  // shouldn't need to call this; instead, specify the convolution dimension
  // numbers when you create the instruction.
  void set_convolution_dimension_numbers(
      const ConvolutionDimensionNumbers& dnums);

  // The number of feature groups. Must be a divisor of the input feature
  // dimension and output feature dimension.
  int64 feature_group_count() const;

  void set_feature_group_count(int64 feature_group_count);

  // Delegates to HloSelectAndScatterInstruction::select.
  HloComputation* select() const;

  // Delegates to HloSelectAndScatterInstruction::scatter.
  HloComputation* scatter() const;

  // Delegates to HloSelectAndScatterInstruction::set_select.
  void set_select(HloComputation* computation);

  // Delegates to HloSelectAndScatterInstruction::set_scatter.
  void set_scatter(HloComputation* computation);

  // Delegates to HloCustomCallInstruction::custom_call_target.
  const string& custom_call_target() const;

  // Delegates to HloPadInstruction::padding_config.
  const PaddingConfig& padding_config() const;

  // Delegates to HloDynamicSliceInstruction::slice_sizes.
  int64 slice_sizes(int64 dimension) const;

  // Delegates to HloDynamicSliceInstruction::dynamic_slice_sizes.
  const std::vector<int64>& dynamic_slice_sizes() const;

  // Delegates to HloGatherInstruction::gather_dimension_numbers.
  const GatherDimensionNumbers& gather_dimension_numbers() const;
  // Delegates to HloGatherInstruction::gather_slice_sizes.
  absl::Span<const int64> gather_slice_sizes() const;

  // Delegates to HloScatterInstruction::scatter_dimension_numbers().
  const ScatterDimensionNumbers& scatter_dimension_numbers() const;

  // Delegates to HloDotInstruction::dot_dimension_numbers().
  const DotDimensionNumbers& dot_dimension_numbers() const;

  // Delegates to HloDomainInstruction::operand_side_metadata().
  const DomainMetadata& operand_side_metadata() const;

  // Delegates to HloDomainInstruction::user_side_metadata().
  const DomainMetadata& user_side_metadata() const;

  // Old methods kept for smooth subclassing transition END.

 protected:
  enum class UseKind { kNoUse, kReuse, kUsePermutingElements, kUse };
  // Helper class for computing OperandElementUse for kFusion.
  class FusionReusesParamElements;

  // Internal constructor for a given opcode/shape, other fields must be filled
  // by factory methods.
  HloInstruction(HloOpcode opcode, const Shape& shape);

  // Appends operand to the list of operands and adds this instruction as a user
  // of the operand.
  void AppendOperand(HloInstruction* operand);

  void RemoveOperandAt(int index) {
    operands_.erase(operands_.begin() + index);
  }

  // Removes a list of operands with the given indices in ascending order.
  void RemoveOperandsAtAscendingIndices(
      absl::Span<const int> ascending_indices);

  void AppendComputation(HloComputation* computation) {
    called_computations_.push_back(computation);
  }

  void DetachFrom(HloInstruction* usee) { usee->RemoveUser(this); }

  void set_called_computation(int index, HloComputation* computation) {
    called_computations_[index] = computation;
  }
  // Indices of computations in called_computations_ for instructions which call
  // multiple computations.
  enum {
    // kWhile computations.
    kBodyComputationIndex = 0,
    kConditionComputationIndex = 1,

    // kSelectAndScatter computations.
    kSelectComputationIndex = 0,
    kScatterComputationIndex = 1,

    // kConditional computations.
    kTrueComputationIndex = 0,
    kFalseComputationIndex = 1,
  };

 private:
  // Implementation for non-common logic of CloneWithNewOperands.
  virtual std::unique_ptr<HloInstruction> CloneWithNewOperandsImpl(
      const Shape& shape, absl::Span<HloInstruction* const> new_operands,
      HloCloneContext* context) const {
    // TODO(b/80131774): This should be pure virtual.
    LOG(FATAL) << "Unimplemented method.";
  }

  // Implementation for non-common logic of ExtraAttributesToString.
  virtual std::vector<string> ExtraAttributesToStringImpl(
      const HloPrintOptions& options) const {
    return {};
  }

  // Implementation for IsElementwise if operand_idx is nullopt and for
  // IsElementwiseOnOperand if otherwise.
  //
  // NOTE: For all instructions other than kFusion, being elementwise on one of
  // the operands is equivalent to being elementwise on all the operands.
  virtual bool IsElementwiseImpl(
      const absl::optional<int64>& operand_idx) const;
  // Prints an instruction to a string.
  //
  // The canonical string representation needs to name operands and instruction
  // names in a consistent way. This is implemented through the
  // canonical_name_map.
  string ToStringWithCanonicalNameMap(
      const HloPrintOptions& options,
      CanonicalNameMap* canonical_name_map) const;

  // Prints an operand to a string.
  virtual string OperandsToStringWithCanonicalNameMap(
      const HloPrintOptions& options,
      CanonicalNameMap* canonical_name_map) const;

  // Allow HloInstruction to access the ToStringWithCanonicalNameMap() and
  // OperandsToStringWithCanonicalNameMap() functions.
  friend class HloComputation;

  // See comments on Identical().
  virtual bool IdenticalSlowPath(
      const HloInstruction& other,
      const std::function<bool(const HloComputation*, const HloComputation*)>&
          eq_computations) const;

  // Creates an n-ary elementwise operation.
  static std::unique_ptr<HloInstruction> CreateNary(
      const Shape& shape, HloOpcode opcode,
      absl::Span<HloInstruction* const> operands);

  // Adds a user for this instruction.
  void AddUser(HloInstruction* user);

  // Removes a user for this instruction.
  void RemoveUser(HloInstruction* user);

  // Returns how this instruction uses elements of its `i`th operand.
  UseKind OperandElementUse(int64 i) const;

  // Helper for implementing backend_config().  Parses backend_config_ into the
  // given proto.
  Status GetBackendConfigInternal(tensorflow::protobuf::Message* proto) const;

  int unique_id_;  // Unique to this HloInstruction within a HloModule

  // Opcode for this instruction.
  HloOpcode opcode_;

  // Instruction operands.
  InstructionVector operands_;

  // The set of control predecessors of this instruction.
  // Note that the order of the instructions in the vector influences the order
  // computed in HloComputation::ComputeInstructionPostOrder, which may
  // influence the result of the compilation by changing the scheduling. We are
  // not sure if it matters.
  std::vector<HloInstruction*> control_predecessors_;

  // The users of this instruction. Users are HLOs where this instruction is an
  // operand. The vector users_ and the set user_set_ contain identical
  // members. The set enables fast membership testing and the vector enables
  // fast, stable iteration.
  std::vector<HloInstruction*> users_;
  absl::flat_hash_set<const HloInstruction*> user_set_;

  // The set of control successors of this instruction.
  std::vector<HloInstruction*> control_successors_;

  // The computation in which this instruction is contained.
  HloComputation* parent_ = nullptr;

  // Result shape of this instruction.
  Shape shape_;

  // The sharding, if one exists.
  // Uses std::shared_ptr to allow reuse of the same sharding object between
  // HloInstructions and other components as HloSharding can be very large for
  // many element tuples.
  std::shared_ptr<const HloSharding> sharding_;

  // Computations called by this instruction.
  std::vector<HloComputation*> called_computations_;

  // A trace instruction that consumes this instruction.
  //
  // Invariant: if trace_instruction_ != nullptr, trace_instruction has this as
  // an operand.
  HloInstruction* trace_instruction_ = nullptr;

  // The backend-specific configuration for how a backend should compile this
  // HLO. See the documentation on backend_config().
  string backend_config_;

  // String identifier for instruction.
  string name_;

  // Metadata for debugging.
  OpMetadata metadata_;

  // The number of partitions per outer dimension (listed in order from
  // outer-most dimension first).
  std::vector<int64> outer_dimension_partitions_;

  TF_DISALLOW_COPY_AND_ASSIGN(HloInstruction);
};

string ToString(HloInstruction::FusionKind kind);
StatusOr<HloInstruction::FusionKind> StringToFusionKind(
    const string& kind_name);

// Custom (de)stringification functions for protos that live inside
// HloInstruction.
string PaddingConfigToString(const PaddingConfig& padding);
string OpMetadataToString(const OpMetadata& metadata);
string RandomDistributionToString(const RandomDistribution& distribution);
string PrecisionToString(const PrecisionConfig::Precision& precision);
string ConvolutionDimensionNumbersToString(
    const ConvolutionDimensionNumbers& dnums);

StatusOr<RandomDistribution> StringToRandomDistribution(const string& name);
StatusOr<PrecisionConfig::Precision> StringToPrecision(const string& name);

std::ostream& operator<<(std::ostream& os, HloInstruction::FusionKind kind);

// Map classes that guarantee a deterministic iteration order when the key is
// an HloInstruction* or a const HloInstruction*.
// To make the iteration order over the map deterministic, the comparator
// should not be using the pointer values, but rather an intrinsic property of
// the hlo. Exception: null pointer values compare less than non-null.
struct HloPtrComparator {
  bool operator()(const HloInstruction* const& lhs,
                  const HloInstruction* const& rhs) const;
};

template <typename ValueT>
using HloInstructionMap = std::map<HloInstruction*, ValueT, HloPtrComparator>;

template <typename ValueT>
using ConstHloInstructionMap =
    std::map<const HloInstruction*, ValueT, HloPtrComparator>;

using HloInstructionSet = std::set<HloInstruction*, HloPtrComparator>;
using ConstHloInstructionSet =
    std::set<const HloInstruction*, HloPtrComparator>;

}  // namespace xla

#endif  // TENSORFLOW_COMPILER_XLA_SERVICE_HLO_INSTRUCTION_H_