aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/hlo_dataflow_analysis_test.cc
blob: 4b8eb237a6712804657bb7b67cdde9a2d331bd11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/hlo_dataflow_analysis.h"

#include "tensorflow/compiler/xla/literal_util.h"
#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/hlo_graph_dumper.h"
#include "tensorflow/compiler/xla/service/hlo_matchers.h"
#include "tensorflow/compiler/xla/service/hlo_opcode.h"
#include "tensorflow/compiler/xla/service/hlo_ordering.h"
#include "tensorflow/compiler/xla/service/instruction_fusion.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/test.h"
#include "tensorflow/compiler/xla/test_helpers.h"
#include "tensorflow/compiler/xla/tests/hlo_test_base.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/test.h"

namespace xla {
namespace {

using ::testing::UnorderedElementsAre;

// Test is parameterized on a bool which is whether the dataflow analysis is
// performed with SSA form.
class HloDataflowAnalysisTest : public HloTestBase,
                                public ::testing::WithParamInterface<bool> {
 protected:
  HloDataflowAnalysisTest() : module_(CreateNewModule()) {}

  // Run dataflow analysis on the member module. For convenience returns a
  // reference to the generated analysis stored in analysis_.
  const HloDataflowAnalysis& RunAnalysis(bool ssa_form,
                                         bool bitcast_defines_value = false) {
    hlo_graph_dumper::MaybeDumpHloModule(*module_, "Before dataflow analysis");
    analysis_ =
        HloDataflowAnalysis::Run(module_.get(), ssa_form, bitcast_defines_value)
            .ConsumeValueOrDie();
    return *analysis_;
  }

  // Return a vector of the HloValues at the given program position.
  std::vector<HloValue> HloValuesAt(const HloInstruction* instruction,
                                    const ShapeIndex& index = {}) {
    CHECK(analysis_ != nullptr);
    std::vector<HloValue> values;
    for (const HloValue* value :
         analysis_->GetValueSet(instruction, index).values()) {
      values.push_back(*value);
    }
    return values;
  }

  // Returns true if the top-level values for instructions 'a' and 'b' may
  // interfere. Precondition: 'a' and 'b' define array-shaped values.
  bool InstructionsMayInterfere(const HloOrdering& ordering,
                                const HloInstruction* a,
                                const HloInstruction* b) {
    EXPECT_FALSE(ShapeUtil::IsTuple(a->shape()));
    EXPECT_FALSE(ShapeUtil::IsTuple(b->shape()));
    return ordering.MayInterfere(analysis_->GetValueDefinedAt(a),
                                 analysis_->GetValueDefinedAt(b), *analysis_);
  }

  std::unique_ptr<HloModule> module_;
  std::unique_ptr<HloDataflowAnalysis> analysis_;

  const Shape scalar_shape_ = ShapeUtil::MakeShape(F32, {});
  const Shape vector_shape_ = ShapeUtil::MakeShape(F32, {42});
};

TEST_P(HloDataflowAnalysisTest, BinaryOperation) {
  // Test the dataflow for a simple binary operation (Add).
  auto builder = HloComputation::Builder(TestName());
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto add = builder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape_, HloOpcode::kAdd, constant1, constant2));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  // Each instruction should define a single value.
  EXPECT_EQ(analysis.values().size(), 3);
  EXPECT_TRUE(analysis.ValueIsDefinedAt(constant1));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(constant2));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(add));

  // Verify the positions of the values. These positions are all trivial because
  // there are no instructions which forward values.
  EXPECT_THAT(analysis.GetValueDefinedAt(constant1).positions(),
              UnorderedElementsAre(HloPosition{constant1, {}}));
  EXPECT_THAT(analysis.GetValueDefinedAt(constant2).positions(),
              UnorderedElementsAre(HloPosition{constant2, {}}));
  EXPECT_THAT(analysis.GetValueDefinedAt(add).positions(),
              UnorderedElementsAre(HloPosition{add, {}}));

  // Verify the uses of the values.
  EXPECT_THAT(analysis.GetValueDefinedAt(constant1).uses(),
              UnorderedElementsAre(HloUse{add, 0, {}}));
  EXPECT_THAT(analysis.GetValueDefinedAt(constant2).uses(),
              UnorderedElementsAre(HloUse{add, 1, {}}));
  EXPECT_TRUE(analysis.GetValueDefinedAt(add).uses().empty());

  // Verify liveout values from the module.
  EXPECT_FALSE(analysis.GetValueDefinedAt(constant1).live_out_of_module());
  EXPECT_FALSE(analysis.GetValueDefinedAt(constant2).live_out_of_module());
  EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_module());
}

TEST_P(HloDataflowAnalysisTest, TupleAndGtes) {
  // Verify the dataflow through a Tuple and GetTupleElement instructions.
  auto builder = HloComputation::Builder(TestName());
  auto param0 = builder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape_, "param0"));
  auto param1 = builder.AddInstruction(
      HloInstruction::CreateParameter(1, scalar_shape_, "param1"));
  auto tuple =
      builder.AddInstruction(HloInstruction::CreateTuple({param0, param1}));
  auto gte0 = builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, tuple, 0));
  auto gte1 = builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, tuple, 1));
  auto add = builder.AddInstruction(
      HloInstruction::CreateBinary(scalar_shape_, HloOpcode::kAdd, gte0, gte1));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  // The two params, tuple, and add should each define one value.
  EXPECT_EQ(analysis.values().size(), 4);

  EXPECT_TRUE(analysis.ValueIsDefinedAt(param0));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(param1));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(tuple, /*index=*/{}));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(tuple, /*index=*/{0}));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(tuple, /*index=*/{1}));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(gte0));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(gte1));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(add));

  // Verify the positions of the values.
  EXPECT_THAT(
      analysis.GetValueDefinedAt(param0).positions(),
      UnorderedElementsAre(HloPosition{param0, {}}, HloPosition{tuple, {0}},
                           HloPosition{gte0, {}}));
  EXPECT_THAT(
      analysis.GetValueDefinedAt(param1).positions(),
      UnorderedElementsAre(HloPosition{param1, {}}, HloPosition{tuple, {1}},
                           HloPosition{gte1, {}}));
  EXPECT_THAT(analysis.GetValueDefinedAt(tuple).positions(),
              UnorderedElementsAre(HloPosition{tuple, {}}));

  // Verify uses. Of interest is that a GetTupleElement instruction is only a
  // use of the top-level value in the tuple operand.
  EXPECT_THAT(analysis.GetValueDefinedAt(param0).uses(),
              UnorderedElementsAre(HloUse{add, 0, {}}));
  EXPECT_THAT(analysis.GetValueDefinedAt(param1).uses(),
              UnorderedElementsAre(HloUse{add, 1, {}}));
  EXPECT_THAT(analysis.GetValueDefinedAt(tuple, /*index=*/{}).uses(),
              UnorderedElementsAre(HloUse{gte0, 0, {}}, HloUse{gte1, 0, {}}));
  EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_module());
}

TEST_P(HloDataflowAnalysisTest, NestedTuple) {
  // Verify the dataflow through a nested tuple.
  auto builder = HloComputation::Builder(TestName());
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto tuple = builder.AddInstruction(
      HloInstruction::CreateTuple({constant1, constant2}));
  auto nested_tuple = builder.AddInstruction(
      HloInstruction::CreateTuple({tuple, tuple, constant1}));
  auto gte_tuple = builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(tuple->shape(), nested_tuple, 1));
  auto gte_out = builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, gte_tuple, 0));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  EXPECT_EQ(analysis.values().size(), 4);

  // Verify positions and uses.
  EXPECT_THAT(
      analysis.GetValueDefinedAt(constant1).positions(),
      UnorderedElementsAre(
          HloPosition{constant1, {}}, HloPosition{tuple, {0}},
          HloPosition{nested_tuple, {0, 0}}, HloPosition{nested_tuple, {1, 0}},
          HloPosition{nested_tuple, {2}}, HloPosition{gte_tuple, {0}},
          HloPosition{gte_out, {}}));
  // Constant values should have no uses though one is live out. The positions
  // where they appear as operands are on instructions which do not use the
  // values (eg, Tuple).
  EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).uses().empty());
  EXPECT_TRUE(analysis.GetValueDefinedAt(constant2).uses().empty());

  // The top-level tuple values are used in GTE instructions.
  EXPECT_THAT(analysis.GetValueDefinedAt(tuple, /*index=*/{}).uses(),
              UnorderedElementsAre(HloUse{gte_out, 0, {}}));
  EXPECT_THAT(analysis.GetValueDefinedAt(nested_tuple, /*index=*/{}).uses(),
              UnorderedElementsAre(HloUse{gte_tuple, 0, {}}));

  EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).live_out_of_module());
  EXPECT_FALSE(analysis.GetValueDefinedAt(constant2).live_out_of_module());
  EXPECT_FALSE(
      analysis.GetValueDefinedAt(tuple, /*index=*/{}).live_out_of_module());
  EXPECT_FALSE(analysis.GetValueDefinedAt(nested_tuple, /*index=*/{})
                   .live_out_of_module());
}

TEST_P(HloDataflowAnalysisTest, SingleCall) {
  // Test a single call of a subcomputation. The subcomputation adds its two
  // array-shaped parameters.
  auto subbuilder = HloComputation::Builder("Subcomputation");
  auto subparam0 = subbuilder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape_, "param0"));
  auto subparam1 = subbuilder.AddInstruction(
      HloInstruction::CreateParameter(1, scalar_shape_, "param1"));
  auto add = subbuilder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape_, HloOpcode::kAdd, subparam0, subparam1));
  HloComputation* called_computation =
      module_->AddEmbeddedComputation(subbuilder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto call = builder.AddInstruction(HloInstruction::CreateCall(
      scalar_shape_, {constant1, constant2}, called_computation));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  EXPECT_EQ(analysis.values().size(), 3);

  // The parameters of the subcomputation and the call instruction itself should
  // not define values. Their values flow from elsewhere.
  EXPECT_TRUE(analysis.ValueIsDefinedAt(constant1));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(constant2));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(subparam0));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(subparam1));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(add));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(call));

  EXPECT_EQ(analysis.GetUniqueValueAt(subparam0),
            analysis.GetValueDefinedAt(constant1));
  EXPECT_EQ(analysis.GetUniqueValueAt(subparam1),
            analysis.GetValueDefinedAt(constant2));
  EXPECT_EQ(analysis.GetUniqueValueAt(call), analysis.GetValueDefinedAt(add));

  EXPECT_THAT(analysis.GetValueDefinedAt(constant1).uses(),
              UnorderedElementsAre(HloUse{add, 0, {}}));
  EXPECT_THAT(analysis.GetValueDefinedAt(constant2).uses(),
              UnorderedElementsAre(HloUse{add, 1, {}}));

  EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_module());
  EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_computation());
}

TEST_P(HloDataflowAnalysisTest, ComputationCalledTwiceWithSameArguments) {
  // Test a subcomputation which is called twice with identical values.
  auto subbuilder = HloComputation::Builder("Subcomputation");
  auto subparam0 = subbuilder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape_, "param0"));
  auto subparam1 = subbuilder.AddInstruction(
      HloInstruction::CreateParameter(1, scalar_shape_, "param1"));
  auto add = subbuilder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape_, HloOpcode::kAdd, subparam0, subparam1));
  HloComputation* called_computation =
      module_->AddEmbeddedComputation(subbuilder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto call1 = builder.AddInstruction(HloInstruction::CreateCall(
      scalar_shape_, {constant1, constant2}, called_computation));
  auto call2 = builder.AddInstruction(HloInstruction::CreateCall(
      scalar_shape_, {constant1, constant2}, called_computation));
  auto sub = builder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape_, HloOpcode::kSubtract, call1, call2));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  EXPECT_EQ(analysis.values().size(), 4);

  // Definitions should be identical to the single callsite case.
  EXPECT_TRUE(analysis.ValueIsDefinedAt(constant1));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(constant2));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(subparam0));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(subparam1));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(add));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(call1));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(call2));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(sub));

  EXPECT_THAT(analysis.GetValueDefinedAt(constant1).uses(),
              UnorderedElementsAre(HloUse{add, 0, {}}));
  EXPECT_THAT(analysis.GetValueDefinedAt(constant2).uses(),
              UnorderedElementsAre(HloUse{add, 1, {}}));
  // The Add from the subcomputation is used as both operands of the Subtract.
  EXPECT_THAT(analysis.GetValueDefinedAt(add).uses(),
              UnorderedElementsAre(HloUse{sub, 0, {}}, HloUse{sub, 1, {}}));

  EXPECT_FALSE(analysis.GetValueDefinedAt(add).live_out_of_module());
  EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_computation());

  EXPECT_TRUE(analysis.GetValueDefinedAt(sub).live_out_of_module());
  EXPECT_TRUE(analysis.GetValueDefinedAt(sub).live_out_of_computation());
}

TEST_P(HloDataflowAnalysisTest, ComputationCalledTwiceWithDifferentArguments) {
  // Test a subcomputation which is called twice with different argument values.
  auto subbuilder = HloComputation::Builder("Subcomputation");
  auto subparam0 = subbuilder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape_, "param0"));
  auto subparam1 = subbuilder.AddInstruction(
      HloInstruction::CreateParameter(1, scalar_shape_, "param1"));
  auto add = subbuilder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape_, HloOpcode::kAdd, subparam0, subparam1));
  HloComputation* called_computation =
      module_->AddEmbeddedComputation(subbuilder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto call1 = builder.AddInstruction(HloInstruction::CreateCall(
      scalar_shape_, {constant1, constant2}, called_computation));
  auto call2 = builder.AddInstruction(HloInstruction::CreateCall(
      scalar_shape_, {call1, constant2}, called_computation));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  EXPECT_FALSE(analysis.ValueIsDefinedAt(call1));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(call2));

  EXPECT_FALSE(analysis.ValueIsDefinedAt(subparam0));

  EXPECT_THAT(HloValuesAt(subparam0),
              UnorderedElementsAre(analysis.GetValueDefinedAt(constant1),
                                   analysis.GetValueDefinedAt(add)));
  EXPECT_THAT(HloValuesAt(subparam1),
              UnorderedElementsAre(analysis.GetValueDefinedAt(constant2)));

  EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_module());
}

TEST_P(HloDataflowAnalysisTest, NestedCalls) {
  // Test a module with nested computations. HLO is:
  //
  // F32[] inner_computation(F32[] %param0, F32[] %param1):
  //   %add = Add(%param0, %param1)
  //
  // F32[] outer_computation((F32[] %param0, F32[] %param1):
  //  ;; Note that parameters are interchanged in the call.
  //   %nested_call = Call(inner_computation, {%param1, %param0})
  //
  // F32[] entry:
  //   %constant1 = Constant(1.0)
  //   %constant2 = Constant(2.0)
  //   %call = Call(outer_computation, {%constant1, %constant2})
  //
  auto inner_builder = HloComputation::Builder("InnerComputation");
  auto inner_param0 = inner_builder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape_, "param0"));
  auto inner_param1 = inner_builder.AddInstruction(
      HloInstruction::CreateParameter(1, scalar_shape_, "param1"));
  auto add = inner_builder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape_, HloOpcode::kAdd, inner_param0, inner_param1));
  HloComputation* inner_computation =
      module_->AddEmbeddedComputation(inner_builder.Build());

  auto outer_builder = HloComputation::Builder("OuterComputation");
  auto outer_param0 = outer_builder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape_, "param0"));
  auto outer_param1 = outer_builder.AddInstruction(
      HloInstruction::CreateParameter(1, scalar_shape_, "param1"));
  // Swizzle parameters.
  outer_builder.AddInstruction(HloInstruction::CreateCall(
      scalar_shape_, {outer_param1, outer_param0}, inner_computation));
  HloComputation* outer_computation =
      module_->AddEmbeddedComputation(outer_builder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  builder.AddInstruction(HloInstruction::CreateCall(
      scalar_shape_, {constant1, constant2}, outer_computation));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  // Only three values should be defined. Most instructions just pass through
  // their operand values.
  EXPECT_EQ(analysis.values().size(), 3);

  // Verify that the uses of the constants are properly swizzled by parameter
  // permutation in nested_call.
  EXPECT_THAT(analysis.GetValueDefinedAt(constant1).uses(),
              UnorderedElementsAre(HloUse{add, 1, {}}));
  EXPECT_THAT(analysis.GetValueDefinedAt(constant2).uses(),
              UnorderedElementsAre(HloUse{add, 0, {}}));

  EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_module());
}

TEST_P(HloDataflowAnalysisTest, SingleWhile) {
  // Test a simple single while instruction. The while body includes a
  // pass-through value. HLO:
  //
  // body((F32[], F32[]) %tuple_param):
  //   %add = Add(%tuple_param{0}, %tuple_param{1})
  //   return Tuple(%tuple_param{0}, %add)
  //
  // condition((F32[], F32[]) %tuple_param):
  //   return Constant(false)
  //
  // entry:
  //   %constant1 = Constant(1.0)
  //   %constant2 = Constant(2.0)
  //   %tuple = Tuple(%constant1, %constant2)
  //   return While(%tuple, body, condition)
  //
  const Shape tuple_shape =
      ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_});

  // Element 0 passes transparently through the body.
  auto body_builder = HloComputation::Builder("body");
  auto body_param = body_builder.AddInstruction(
      HloInstruction::CreateParameter(0, tuple_shape, "param"));
  auto body_element_0 = body_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0));
  auto body_element_1 = body_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1));
  auto add = body_builder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape_, HloOpcode::kAdd, body_element_0, body_element_1));
  body_builder.AddInstruction(
      HloInstruction::CreateTuple({body_element_0, add}));
  HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build());

  // Condition computation trivially returns a constant "false".
  auto cond_builder = HloComputation::Builder("condition");
  auto cond_param = cond_builder.AddInstruction(
      HloInstruction::CreateParameter(0, tuple_shape, "param"));
  auto cond_constant = cond_builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<bool>(false)));
  HloComputation* condition =
      module_->AddEmbeddedComputation(cond_builder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto tuple = builder.AddInstruction(
      HloInstruction::CreateTuple({constant1, constant2}));
  auto xla_while = builder.AddInstruction(
      HloInstruction::CreateWhile(tuple_shape, condition, body, tuple));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  EXPECT_TRUE(
      analysis.GetValueDefinedAt(cond_constant).live_out_of_computation());
  EXPECT_FALSE(analysis.GetValueDefinedAt(cond_constant).live_out_of_module());

  if (ssa_form) {
    // Element 0 of the tuple passed through the body so no phi value is
    // defined.
    EXPECT_FALSE(analysis.ValueIsDefinedAt(xla_while, /*index=*/{0}));
    EXPECT_FALSE(analysis.ValueIsDefinedAt(body_param, /*index=*/{0}));
    EXPECT_FALSE(analysis.ValueIsDefinedAt(cond_param, /*index=*/{0}));

    // Element 1 of the tuple should be a phi value.
    EXPECT_TRUE(analysis.ValueIsDefinedAt(xla_while, /*index=*/{1}));
    EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, /*index=*/{1}).is_phi());
    EXPECT_TRUE(analysis.ValueIsDefinedAt(body_param, /*index=*/{1}));
    EXPECT_TRUE(analysis.GetValueDefinedAt(body_param, /*index=*/{1}).is_phi());
    EXPECT_TRUE(analysis.ValueIsDefinedAt(cond_param, /*index=*/{1}));
    EXPECT_TRUE(analysis.GetValueDefinedAt(cond_param, /*index=*/{1}).is_phi());

    EXPECT_THAT(
        analysis.GetValueDefinedAt(constant1).uses(),
        UnorderedElementsAre(HloUse{add, 0, {}}, HloUse{xla_while, 0, {0}}));

    // Constant1 passes through the body and out of the module.
    EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).live_out_of_module());
    EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, /*index=*/{1})
                    .live_out_of_module());

    EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_computation());
    EXPECT_FALSE(analysis.GetValueDefinedAt(add).live_out_of_module());
  } else {
    // While instruction and subcomputation parameters should not define values
    // in non-ssa form.
    EXPECT_FALSE(analysis.ValueIsDefinedAt(xla_while, /*index=*/{0}));
    EXPECT_FALSE(analysis.ValueIsDefinedAt(xla_while, /*index=*/{1}));
    EXPECT_FALSE(analysis.ValueIsDefinedAt(body_param, /*index=*/{0}));
    EXPECT_FALSE(analysis.ValueIsDefinedAt(body_param, /*index=*/{1}));
    EXPECT_FALSE(analysis.ValueIsDefinedAt(cond_param, /*index=*/{0}));
    EXPECT_FALSE(analysis.ValueIsDefinedAt(cond_param, /*index=*/{1}));

    EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).live_out_of_module());
    EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_module());
    EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_computation());
  }
}

TEST_P(HloDataflowAnalysisTest, SequentialWhiles) {
  // Test sequential while instructions. The while body includes a
  // pass-through value. HLO:
  //
  // body((F32[], F32[]) %tuple_param):
  //   %add = Add(%tuple_param{0}, %tuple_param{1})
  //   return Tuple(%tuple_param{0}, %add)
  //
  // condition((F32[], F32[]) %tuple_param):
  //   return Constant(false)
  //
  // entry:
  //   %constant1 = Constant(1.0)
  //   %constant2 = Constant(2.0)
  //   %tuple = Tuple(%constant1, %constant2)
  //   %while0 = While(%tuple, body, condition)
  //   %while1 = While(%while0, body, condition)
  //   return While(%while1, body, condition)
  //
  const Shape tuple_shape =
      ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_});

  // Element 0 passes transparently through the body.
  auto body_builder = HloComputation::Builder("body");
  auto body_param = body_builder.AddInstruction(
      HloInstruction::CreateParameter(0, tuple_shape, "param"));
  auto body_element_0 = body_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0));
  auto body_element_1 = body_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1));
  auto add = body_builder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape_, HloOpcode::kAdd, body_element_0, body_element_1));
  body_builder.AddInstruction(
      HloInstruction::CreateTuple({body_element_0, add}));
  HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build());

  auto cond_builder = HloComputation::Builder("condition");
  cond_builder.AddInstruction(
      HloInstruction::CreateParameter(0, tuple_shape, "param"));
  cond_builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<bool>(false)));
  HloComputation* condition =
      module_->AddEmbeddedComputation(cond_builder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto tuple = builder.AddInstruction(
      HloInstruction::CreateTuple({constant1, constant2}));
  auto xla_while0 = builder.AddInstruction(
      HloInstruction::CreateWhile(tuple_shape, condition, body, tuple));
  auto xla_while1 = builder.AddInstruction(
      HloInstruction::CreateWhile(tuple_shape, condition, body, xla_while0));
  auto xla_while2 = builder.AddInstruction(
      HloInstruction::CreateWhile(tuple_shape, condition, body, xla_while1));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  // Element 0 is passed through all the while instructions and out of the
  // module..
  EXPECT_EQ(analysis.GetUniqueValueAt(xla_while0, /*index=*/{0}),
            analysis.GetValueDefinedAt(constant1));
  EXPECT_EQ(analysis.GetUniqueValueAt(xla_while1, /*index=*/{0}),
            analysis.GetValueDefinedAt(constant1));
  EXPECT_EQ(analysis.GetUniqueValueAt(xla_while2, /*index=*/{0}),
            analysis.GetValueDefinedAt(constant1));
  EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).live_out_of_module());
}

TEST_P(HloDataflowAnalysisTest, NestedWhiles) {
  // Test nested while instructions. The inner body passes through element 0 of
  // its parameter, and the outer body passes through element 1.  HLO:
  //
  // inner_body((F32[], F32[]) %tuple_param):
  //   %add = Add(%tuple_param{0}, %tuple_param{1})
  //   return Tuple(%tuple_param{0}, %add)
  //
  // outer_body((F32[], F32[]) %tuple_param):
  //   %negate = Negate(%tuple_param{0})
  //   %tuple = Tuple(%negate, %tuple_param{1})
  //   return While(%tuple, inner_body, condition)
  //
  // entry:
  //   %constant1 = Constant(1.0)
  //   %constant2 = Constant(2.0)
  //   %tuple = Tuple(%constant1, %constant2)
  //   return While(%tuple, outer_body, condition)
  //
  const Shape tuple_shape =
      ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_});

  auto cond_builder = HloComputation::Builder("condition");
  cond_builder.AddInstruction(
      HloInstruction::CreateParameter(0, tuple_shape, "param"));
  cond_builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<bool>(false)));
  HloComputation* condition =
      module_->AddEmbeddedComputation(cond_builder.Build());

  // Element 0 passes transparently through the body.
  auto inner_builder = HloComputation::Builder("inner_body");
  auto inner_param = inner_builder.AddInstruction(
      HloInstruction::CreateParameter(0, tuple_shape, "param"));
  auto inner_element_0 = inner_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, inner_param, 0));
  auto inner_element_1 = inner_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, inner_param, 1));
  auto add = inner_builder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape_, HloOpcode::kAdd, inner_element_0, inner_element_1));
  inner_builder.AddInstruction(
      HloInstruction::CreateTuple({inner_element_0, add}));
  HloComputation* inner_body =
      module_->AddEmbeddedComputation(inner_builder.Build());

  // Element 1 passes transparently through the body.
  auto outer_builder = HloComputation::Builder("outer_body");
  auto outer_param = outer_builder.AddInstruction(
      HloInstruction::CreateParameter(0, tuple_shape, "param"));
  auto outer_element_0 = outer_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, outer_param, 0));
  auto negate = outer_builder.AddInstruction(HloInstruction::CreateUnary(
      scalar_shape_, HloOpcode::kNegate, outer_element_0));
  auto outer_element_1 = outer_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, outer_param, 1));
  auto outer_tuple = outer_builder.AddInstruction(
      HloInstruction::CreateTuple({negate, outer_element_1}));
  auto nested_while = outer_builder.AddInstruction(HloInstruction::CreateWhile(
      tuple_shape, condition, inner_body, outer_tuple));
  HloComputation* outer_body =
      module_->AddEmbeddedComputation(outer_builder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto tuple = builder.AddInstruction(
      HloInstruction::CreateTuple({constant1, constant2}));
  auto entry_while = builder.AddInstruction(
      HloInstruction::CreateWhile(tuple_shape, condition, outer_body, tuple));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  EXPECT_THAT(HloValuesAt(inner_param, /*index=*/{0}),
              UnorderedElementsAre(analysis.GetValueDefinedAt(negate)));
  if (ssa_form) {
    EXPECT_TRUE(analysis.ValueIsDefinedAt(inner_param, /*index=*/{1}));
    EXPECT_TRUE(
        analysis.GetValueDefinedAt(inner_param, /*index=*/{1}).is_phi());

    // Element 0 of the nested while is %negate.
    EXPECT_FALSE(analysis.ValueIsDefinedAt(nested_while, /*index=*/{0}));
    EXPECT_THAT(HloValuesAt(inner_param, /*index=*/{0}),
                UnorderedElementsAre(analysis.GetValueDefinedAt(negate)));
    // Element 1 is a phi value (join of %add and %constant2).
    EXPECT_TRUE(analysis.ValueIsDefinedAt(nested_while, /*index=*/{1}));
    EXPECT_TRUE(
        analysis.GetValueDefinedAt(nested_while, /*index=*/{1}).is_phi());

    EXPECT_TRUE(analysis.ValueIsDefinedAt(entry_while, /*index=*/{0}));
    EXPECT_TRUE(
        analysis.GetValueDefinedAt(entry_while, /*index=*/{0}).is_phi());

    EXPECT_TRUE(analysis.ValueIsDefinedAt(entry_while, /*index=*/{1}));
    EXPECT_TRUE(
        analysis.GetValueDefinedAt(entry_while, /*index=*/{1}).is_phi());
  } else {
    EXPECT_THAT(HloValuesAt(inner_param, /*index=*/{1}),
                UnorderedElementsAre(analysis.GetValueDefinedAt(add),
                                     analysis.GetValueDefinedAt(constant2)));

    EXPECT_THAT(HloValuesAt(nested_while, /*index=*/{0}),
                UnorderedElementsAre(analysis.GetValueDefinedAt(negate)));
    EXPECT_THAT(HloValuesAt(nested_while, /*index=*/{1}),
                UnorderedElementsAre(analysis.GetValueDefinedAt(add),
                                     analysis.GetValueDefinedAt(constant2)));

    EXPECT_THAT(HloValuesAt(entry_while, /*index=*/{0}),
                UnorderedElementsAre(analysis.GetValueDefinedAt(negate),
                                     analysis.GetValueDefinedAt(constant1)));
    EXPECT_THAT(HloValuesAt(entry_while, /*index=*/{1}),
                UnorderedElementsAre(analysis.GetValueDefinedAt(add),
                                     analysis.GetValueDefinedAt(constant2)));
  }
}

TEST_P(HloDataflowAnalysisTest, SwizzlingWhile) {
  // Test a while instruction with a body which permutes it's tuple parameter
  // elements. HLO:
  //
  // body((F32[], F32[]) %tuple_param):
  //   return Tuple(%tuple_param{1}, %tuple_param{0})
  //
  // condition((F32[], F32[]) %tuple_param):
  //   return Constant(false)
  //
  // entry:
  //   %constant1 = Constant(1.0)
  //   %constant2 = Constant(2.0)
  //   %tuple = Tuple(%constant1, %constant2)
  //   return While(%tuple, body, condition)
  //
  const Shape tuple_shape =
      ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_});

  auto body_builder = HloComputation::Builder("body");
  auto body_param = body_builder.AddInstruction(
      HloInstruction::CreateParameter(0, tuple_shape, "param"));
  auto body_element_0 = body_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0));
  auto body_element_1 = body_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1));
  body_builder.AddInstruction(
      HloInstruction::CreateTuple({body_element_1, body_element_0}));
  HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build());

  auto cond_builder = HloComputation::Builder("condition");
  auto cond_param = cond_builder.AddInstruction(
      HloInstruction::CreateParameter(0, tuple_shape, "param"));
  cond_builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<bool>(false)));
  HloComputation* condition =
      module_->AddEmbeddedComputation(cond_builder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto tuple = builder.AddInstruction(
      HloInstruction::CreateTuple({constant1, constant2}));
  auto xla_while = builder.AddInstruction(
      HloInstruction::CreateWhile(tuple_shape, condition, body, tuple));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  if (ssa_form) {
    // Element 0 and 1 in the while should both be phi values.
    EXPECT_TRUE(analysis.ValueIsDefinedAt(body_param, /*index=*/{0}));
    EXPECT_TRUE(analysis.GetValueDefinedAt(body_param, /*index=*/{0}).is_phi());
    EXPECT_TRUE(analysis.ValueIsDefinedAt(body_param, /*index=*/{1}));
    EXPECT_TRUE(analysis.GetValueDefinedAt(body_param, /*index=*/{1}).is_phi());

    EXPECT_TRUE(analysis.ValueIsDefinedAt(xla_while, /*index=*/{0}));
    EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, /*index=*/{0}).is_phi());
    EXPECT_TRUE(analysis.ValueIsDefinedAt(xla_while, /*index=*/{1}));
    EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, /*index=*/{1}).is_phi());

    EXPECT_TRUE(analysis.ValueIsDefinedAt(cond_param, /*index=*/{0}));
    EXPECT_TRUE(analysis.GetValueDefinedAt(cond_param, /*index=*/{0}).is_phi());
    EXPECT_TRUE(analysis.ValueIsDefinedAt(cond_param, /*index=*/{1}));
    EXPECT_TRUE(analysis.GetValueDefinedAt(cond_param, /*index=*/{1}).is_phi());

    EXPECT_FALSE(analysis.GetValueDefinedAt(constant1).live_out_of_module());
    EXPECT_FALSE(analysis.GetValueDefinedAt(constant2).live_out_of_module());
    EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, /*index=*/{})
                    .live_out_of_module());
    EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, /*index=*/{0})
                    .live_out_of_module());
    EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, /*index=*/{1})
                    .live_out_of_module());
  } else {
    // Elements 0 and 1 have both constants as reaching definitions.
    EXPECT_THAT(HloValuesAt(xla_while, /*index=*/{0}),
                UnorderedElementsAre(analysis.GetValueDefinedAt(constant1),
                                     analysis.GetValueDefinedAt(constant2)));
    EXPECT_THAT(HloValuesAt(xla_while, /*index=*/{1}),
                UnorderedElementsAre(analysis.GetValueDefinedAt(constant1),
                                     analysis.GetValueDefinedAt(constant2)));
    EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).live_out_of_module());
    EXPECT_TRUE(analysis.GetValueDefinedAt(constant2).live_out_of_module());
  }
}

TEST_P(HloDataflowAnalysisTest, ArraySelect) {
  // Test a kSelect of an array value.
  auto builder = HloComputation::Builder(TestName());
  auto pred = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<bool>(false)));
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto select = builder.AddInstruction(HloInstruction::CreateTernary(
      scalar_shape_, HloOpcode::kSelect, pred, constant1, constant2));

  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  EXPECT_TRUE(analysis.ValueIsDefinedAt(select));
  EXPECT_FALSE(analysis.GetValueDefinedAt(constant1).live_out_of_module());
  EXPECT_FALSE(analysis.GetValueDefinedAt(constant2).live_out_of_module());
  EXPECT_TRUE(analysis.GetValueDefinedAt(select).live_out_of_module());
}

TEST_P(HloDataflowAnalysisTest, TupleSelect) {
  // Test a kSelect of a tuple value. Non-top-level element flow through the
  // instruction.
  auto builder = HloComputation::Builder(TestName());
  auto pred = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<bool>(false)));
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto constant3 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(3.0)));
  auto constant4 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(4.0)));
  auto tuple1 =
      builder.AddInstruction(HloInstruction::CreateTuple({constant1}));
  auto tuple2 =
      builder.AddInstruction(HloInstruction::CreateTuple({constant2}));
  auto tuple3 =
      builder.AddInstruction(HloInstruction::CreateTuple({constant3}));
  auto tuple4 =
      builder.AddInstruction(HloInstruction::CreateTuple({constant4}));
  const Shape tuple_shape = tuple1->shape();
  auto select11 = builder.AddInstruction(HloInstruction::CreateTernary(
      tuple_shape, HloOpcode::kSelect, pred, tuple1, tuple1));
  auto select12 = builder.AddInstruction(HloInstruction::CreateTernary(
      tuple_shape, HloOpcode::kSelect, pred, tuple1, tuple2));
  auto select34 = builder.AddInstruction(HloInstruction::CreateTernary(
      tuple_shape, HloOpcode::kSelect, pred, tuple3, tuple4));
  auto select1234 = builder.AddInstruction(HloInstruction::CreateTernary(
      tuple_shape, HloOpcode::kSelect, pred, select12, select34));

  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  // Top-level value is always defined by a kSelect.
  EXPECT_TRUE(analysis.ValueIsDefinedAt(select11));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(select12));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(select34));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(select1234));

  EXPECT_FALSE(analysis.ValueIsDefinedAt(select11, /*index=*/{0}));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(select12, /*index=*/{0}));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(select34, /*index=*/{0}));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(select1234, /*index=*/{0}));

  EXPECT_THAT(HloValuesAt(select11, /*index=*/{0}),
              UnorderedElementsAre(analysis.GetValueDefinedAt(constant1)));
  EXPECT_THAT(HloValuesAt(select12, /*index=*/{0}),
              UnorderedElementsAre(analysis.GetValueDefinedAt(constant1),
                                   analysis.GetValueDefinedAt(constant2)));
  EXPECT_THAT(HloValuesAt(select34, /*index=*/{0}),
              UnorderedElementsAre(analysis.GetValueDefinedAt(constant3),
                                   analysis.GetValueDefinedAt(constant4)));
  EXPECT_THAT(HloValuesAt(select1234, /*index=*/{0}),
              UnorderedElementsAre(analysis.GetValueDefinedAt(constant1),
                                   analysis.GetValueDefinedAt(constant2),
                                   analysis.GetValueDefinedAt(constant3),
                                   analysis.GetValueDefinedAt(constant4)));

  EXPECT_THAT(
      analysis.GetValueDefinedAt(tuple1, /*index=*/{}).uses(),
      UnorderedElementsAre(HloUse{select11, 1, {}}, HloUse{select11, 2, {}},
                           HloUse{select12, 1, {}}));

  // The two constant values just pass through the Selects and are not
  // used. They are live out however.
  EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).uses().empty());
  EXPECT_TRUE(analysis.GetValueDefinedAt(constant2).uses().empty());
  EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).live_out_of_module());
  EXPECT_TRUE(analysis.GetValueDefinedAt(constant2).live_out_of_module());
}

TEST_P(HloDataflowAnalysisTest, NestedTupleSelect) {
  // Test kSelect of a nested tuple.
  auto builder = HloComputation::Builder(TestName());
  auto pred = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<bool>(false)));
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto constant3 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(3.0)));
  auto constant4 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(4.0)));
  auto constant5 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(5.0)));
  auto inner_tuple1 = builder.AddInstruction(
      HloInstruction::CreateTuple({constant2, constant3}));
  auto tuple1 = builder.AddInstruction(
      HloInstruction::CreateTuple({constant1, inner_tuple1}));
  auto inner_tuple2 = builder.AddInstruction(
      HloInstruction::CreateTuple({constant5, constant3}));
  auto tuple2 = builder.AddInstruction(
      HloInstruction::CreateTuple({constant4, inner_tuple2}));
  auto select = builder.AddInstruction(HloInstruction::CreateTernary(
      tuple1->shape(), HloOpcode::kSelect, pred, tuple1, tuple2));

  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  EXPECT_TRUE(analysis.ValueIsDefinedAt(select));

  EXPECT_THAT(HloValuesAt(select, /*index=*/{0}),
              UnorderedElementsAre(analysis.GetValueDefinedAt(constant1),
                                   analysis.GetValueDefinedAt(constant4)));
  EXPECT_THAT(HloValuesAt(select, /*index=*/{1}),
              UnorderedElementsAre(analysis.GetValueDefinedAt(inner_tuple1),
                                   analysis.GetValueDefinedAt(inner_tuple2)));
  EXPECT_THAT(HloValuesAt(select, /*index=*/{1, 0}),
              UnorderedElementsAre(analysis.GetValueDefinedAt(constant2),
                                   analysis.GetValueDefinedAt(constant5)));
  EXPECT_THAT(HloValuesAt(select, /*index=*/{1, 1}),
              UnorderedElementsAre(analysis.GetValueDefinedAt(constant3)));
}

TEST_P(HloDataflowAnalysisTest, TupleSelectToWhile) {
  // Test a tuple-shaped kSelect feeding a kWhile instruction. HLO:
  //
  // body((F32[], F32[]) %tuple_param):
  //   %add = Add(%tuple_param{0}, %tuple_param{1})
  //   return Tuple(%tuple_param{0}, %add)
  //
  // condition((F32[], F32[]) %tuple_param):
  //   return Constant(false)
  //
  // entry:
  //   %constant1 = Constant(1.0)
  //   %constant2 = Constant(2.0)
  //   %constant3 = Constant(3.0)
  //   %tuple1 = Tuple(%constant1)
  //   %tuple2 = Tuple(%constant2)
  //   %select = Select(%tuple1, %tuple2)
  //   %gte = GetTupleElement(%select, 0)
  //   %tuple = Tuple(%gte, %constant3)
  //   return While(%tuple, body, condition)
  //
  auto builder = HloComputation::Builder(TestName());

  const Shape tuple_shape =
      ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_});

  // Element 0 passes transparently through the body.
  auto body_builder = HloComputation::Builder("body");
  auto body_param = body_builder.AddInstruction(
      HloInstruction::CreateParameter(0, tuple_shape, "param"));
  auto body_element_0 = body_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0));
  auto body_element_1 = body_builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1));
  auto add = body_builder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape_, HloOpcode::kAdd, body_element_0, body_element_1));
  body_builder.AddInstruction(
      HloInstruction::CreateTuple({body_element_0, add}));
  HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build());

  auto cond_builder = HloComputation::Builder("condition");
  cond_builder.AddInstruction(
      HloInstruction::CreateParameter(0, tuple_shape, "param"));
  cond_builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<bool>(false)));
  HloComputation* condition =
      module_->AddEmbeddedComputation(cond_builder.Build());

  auto pred = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<bool>(false)));
  auto constant1 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto constant2 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(2.0)));
  auto constant3 = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(3.0)));
  auto tuple1 =
      builder.AddInstruction(HloInstruction::CreateTuple({constant1}));
  auto tuple2 =
      builder.AddInstruction(HloInstruction::CreateTuple({constant2}));
  auto select = builder.AddInstruction(HloInstruction::CreateTernary(
      tuple1->shape(), HloOpcode::kSelect, pred, tuple1, tuple2));
  auto gte = builder.AddInstruction(
      HloInstruction::CreateGetTupleElement(scalar_shape_, select, 0));
  auto tuple =
      builder.AddInstruction(HloInstruction::CreateTuple({gte, constant3}));
  auto xla_while = builder.AddInstruction(
      HloInstruction::CreateWhile(tuple->shape(), condition, body, tuple));

  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  if (ssa_form) {
    EXPECT_TRUE(analysis.ValueIsDefinedAt(xla_while, /*index=*/{0}));
    EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, /*index=*/{0}).is_phi());
    EXPECT_TRUE(analysis.ValueIsDefinedAt(xla_while, /*index=*/{1}));
    EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, /*index=*/{1}).is_phi());

    EXPECT_FALSE(analysis.ValueIsDefinedAt(select, /*index=*/{0}));

    EXPECT_FALSE(analysis.GetValueDefinedAt(constant1).live_out_of_module());
    EXPECT_FALSE(analysis.GetValueDefinedAt(constant2).live_out_of_module());
    EXPECT_FALSE(analysis.GetValueDefinedAt(constant3).live_out_of_module());
    EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, /*index=*/{1})
                    .live_out_of_module());
  } else {
    EXPECT_THAT(HloValuesAt(gte),
                UnorderedElementsAre(analysis.GetValueDefinedAt(constant1),
                                     analysis.GetValueDefinedAt(constant2)));
    EXPECT_THAT(HloValuesAt(xla_while, /*index=*/{0}),
                UnorderedElementsAre(analysis.GetValueDefinedAt(constant1),
                                     analysis.GetValueDefinedAt(constant2)));
    EXPECT_THAT(HloValuesAt(xla_while, /*index=*/{1}),
                UnorderedElementsAre(analysis.GetValueDefinedAt(add),
                                     analysis.GetValueDefinedAt(constant3)));
    EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).live_out_of_module());
    EXPECT_TRUE(analysis.GetValueDefinedAt(constant2).live_out_of_module());
    EXPECT_TRUE(analysis.GetValueDefinedAt(constant3).live_out_of_module());
  }
}

TEST_P(HloDataflowAnalysisTest, BitcastDefinesValue) {
  // Test the bitcast_defines_value flag to the dataflow analysis.
  auto builder = HloComputation::Builder(TestName());
  auto constant = builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto bitcast = builder.AddInstruction(HloInstruction::CreateUnary(
      scalar_shape_, HloOpcode::kBitcast, constant));

  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  {
    const HloDataflowAnalysis& analysis =
        RunAnalysis(ssa_form, /*bitcast_defines_value=*/true);

    EXPECT_EQ(analysis.values().size(), 2);

    EXPECT_TRUE(analysis.ValueIsDefinedAt(constant));
    EXPECT_TRUE(analysis.ValueIsDefinedAt(bitcast));
    EXPECT_FALSE(analysis.GetValueDefinedAt(constant).live_out_of_module());
    EXPECT_TRUE(analysis.GetValueDefinedAt(bitcast).live_out_of_module());
  }
  {
    const HloDataflowAnalysis& analysis =
        RunAnalysis(ssa_form, /*bitcast_defines_value=*/false);
    EXPECT_EQ(analysis.values().size(), 1);

    EXPECT_TRUE(analysis.ValueIsDefinedAt(constant));
    EXPECT_FALSE(analysis.ValueIsDefinedAt(bitcast));
    EXPECT_TRUE(analysis.GetValueDefinedAt(constant).live_out_of_module());
  }
}

TEST_P(HloDataflowAnalysisTest, TupleCopy) {
  // Test that a tuple-shaped copy only copies (defines) the top-level value.
  auto builder = HloComputation::Builder(TestName());
  auto param0 = builder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape_, "param0"));
  auto param1 = builder.AddInstruction(
      HloInstruction::CreateParameter(1, scalar_shape_, "param1"));
  auto tuple =
      builder.AddInstruction(HloInstruction::CreateTuple({param0, param1}));
  auto copy = builder.AddInstruction(
      HloInstruction::CreateUnary(tuple->shape(), HloOpcode::kCopy, tuple));
  module_->AddEntryComputation(builder.Build());

  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  EXPECT_EQ(analysis.values().size(), 4);

  EXPECT_TRUE(analysis.ValueIsDefinedAt(param0));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(param1));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(tuple, /*index=*/{}));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(tuple, /*index=*/{0}));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(tuple, /*index=*/{1}));
  EXPECT_TRUE(analysis.ValueIsDefinedAt(copy, /*index=*/{}));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(copy, /*index=*/{0}));
  EXPECT_FALSE(analysis.ValueIsDefinedAt(copy, /*index=*/{1}));

  EXPECT_THAT(HloValuesAt(copy, /*index=*/{0}),
              UnorderedElementsAre(analysis.GetValueDefinedAt(param0)));
  EXPECT_THAT(HloValuesAt(copy, /*index=*/{1}),
              UnorderedElementsAre(analysis.GetValueDefinedAt(param1)));
  EXPECT_TRUE(
      analysis.GetValueDefinedAt(copy, /*index=*/{}).live_out_of_module());
}

TEST_P(HloDataflowAnalysisTest, ElementwiseChainInterference) {
  // A simple chain of elementwise operations. No values should interfere.
  //
  // param --> negate -> exp -> log
  //
  auto builder = HloComputation::Builder(TestName());
  auto param = builder.AddInstruction(
      HloInstruction::CreateParameter(0, vector_shape_, "param"));
  auto negate = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kNegate, param));
  auto exp = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kExp, negate));
  auto log = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kLog, exp));

  module_->AddEntryComputation(builder.Build());
  RunAnalysis(GetParam());

  DependencyHloOrdering ordering(module_.get());

  // No values should interfere.
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param, exp));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param, log));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, negate, exp));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, negate, log));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, exp, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, exp, log));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, log, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, log, exp));

  // Values should interfere with itself.
  EXPECT_TRUE(InstructionsMayInterfere(ordering, exp, exp));
}

TEST_P(HloDataflowAnalysisTest, MultipleEntryParameters_Sequential) {
  // Two entry params, which interfere with each other.
  //
  // param0 --> negate ---------------\
  //                param1 --> exp --> add
  auto builder = HloComputation::Builder(TestName());
  auto param0 = builder.AddInstruction(
      HloInstruction::CreateParameter(0, vector_shape_, "param0"));
  auto param1 = builder.AddInstruction(
      HloInstruction::CreateParameter(1, vector_shape_, "param1"));
  auto negate = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kNegate, param0));
  auto exp = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kExp, param1));
  auto add = builder.AddInstruction(HloInstruction::CreateBinary(
      vector_shape_, HloOpcode::kAdd, negate, exp));

  auto entry = module_->AddEntryComputation(builder.Build());
  RunAnalysis(GetParam());

  SequentialHloOrdering::HloModuleSequence sequence;
  sequence.insert({entry, {param0, negate, param1, exp, add}});
  SequentialHloOrdering ordering(module_.get(), sequence);

  // Entry parameters interfere as if they are defined simultaneously at
  // the very beginning.
  EXPECT_TRUE(InstructionsMayInterfere(ordering, param0, param1));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param0, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param0, exp));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param0, add));
  EXPECT_TRUE(InstructionsMayInterfere(ordering, param1, param0));
  EXPECT_TRUE(InstructionsMayInterfere(ordering, param1, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param1, exp));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param1, add));

  // Negate and exp still interfere.
  EXPECT_TRUE(InstructionsMayInterfere(ordering, negate, exp));
  EXPECT_TRUE(InstructionsMayInterfere(ordering, exp, negate));

  // But {negate, add} and {exp, add} don't interfere.
  EXPECT_FALSE(InstructionsMayInterfere(ordering, negate, add));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, add, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, exp, add));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, add, exp));
}

TEST_P(HloDataflowAnalysisTest, WhileParameters_Sequential) {
  // Similar to MultipleEntryParameters_Sequential, but the parameter is of
  // while body computation. Body computation in the sequential order:
  //
  //  %constant = Constant(...)
  //  %exp = Exp(%constant)
  //  %param = Param(0)
  //  %add = Add(%param, %exp)  ;; Root of body
  //  %dead_constant = Constant(...)
  //  %dead_negate = Negate(%dead_constant)
  //
  // %constant and its only use %exp are ordered before 'param'. However, the
  // %constant and %param values still interfere because the parameter is
  // considered live into the while body.
  //
  // Similarly, %dead_constant and %dead_negate are ordered after the root of
  // the body computation %add. However, %add is liveout of the computation so
  // %dead_constant and %add interfere.
  auto body_builder = HloComputation::Builder(TestName());
  auto body_param = body_builder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape_, "body_param"));
  auto constant = body_builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto exp = body_builder.AddInstruction(
      HloInstruction::CreateUnary(scalar_shape_, HloOpcode::kExp, constant));
  auto add = body_builder.AddInstruction(HloInstruction::CreateBinary(
      scalar_shape_, HloOpcode::kAdd, exp, body_param));
  auto dead_constant = body_builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<float>(1.0)));
  auto dead_negate = body_builder.AddInstruction(HloInstruction::CreateUnary(
      scalar_shape_, HloOpcode::kNegate, dead_constant));
  HloComputation* body = module_->AddEmbeddedComputation(
      body_builder.Build(/*root_instruction=*/add));

  auto cond_builder = HloComputation::Builder("condition");
  auto cond_param = cond_builder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape_, "cond_param"));
  auto cond_constant = cond_builder.AddInstruction(
      HloInstruction::CreateConstant(Literal::CreateR0<bool>(false)));
  HloComputation* condition =
      module_->AddEmbeddedComputation(cond_builder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto param = builder.AddInstruction(
      HloInstruction::CreateParameter(0, scalar_shape_, "param"));
  auto xla_while = builder.AddInstruction(
      HloInstruction::CreateWhile(scalar_shape_, condition, body, param));

  auto entry = module_->AddEntryComputation(builder.Build());
  bool ssa_form = GetParam();
  const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form);

  SequentialHloOrdering::HloModuleSequence sequence;
  sequence.insert({entry, {param, xla_while}});
  sequence.insert({condition, {cond_param, cond_constant}});
  // Construct the order such that 'constant' and its use 'exp' are before
  // body_param.
  sequence.insert({body, {constant, exp, body_param, add}});

  SequentialHloOrdering ordering(module_.get(), sequence);

  // 'add' is the body root even though later instructions follow in the order
  // like 'dead_negate'. Only 'add' should be live out of the computation.
  EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_computation());
  EXPECT_FALSE(
      analysis.GetValueDefinedAt(dead_negate).live_out_of_computation());

  // 'add' is live out of the body and will interfere with an later instructions
  // such as 'dead_constant' and 'dead_negate'.
  EXPECT_TRUE(InstructionsMayInterfere(ordering, add, dead_constant));
  EXPECT_TRUE(InstructionsMayInterfere(ordering, add, dead_negate));

  // The remaining checks test phi values defined by body and condition
  // parameters which only occur in the SSA form of the analysis.
  if (ssa_form) {
    // Though the ordering suggests 'constant' and 'param' should not interfere,
    // 'param' is live in and thus interferes with any earlier instruction of
    // the computation in the order (eg 'constant')'
    EXPECT_TRUE(InstructionsMayInterfere(ordering, body_param, constant));
    EXPECT_TRUE(InstructionsMayInterfere(ordering, body_param, exp));
    EXPECT_FALSE(InstructionsMayInterfere(ordering, body_param, add));

    // The following values end up in the same buffer:
    //  (1) the init value: 'param'
    //  (2) the body parameter: 'body_param'
    //  (3) the condition parameter: 'cond_param'
    //  (4) the root value of the while body: 'add'
    //  (5) the while value: 'xla_while'
    // None should interfere.
    EXPECT_FALSE(InstructionsMayInterfere(ordering, param, body_param));
    EXPECT_FALSE(InstructionsMayInterfere(ordering, param, cond_param));
    EXPECT_FALSE(InstructionsMayInterfere(ordering, param, add));
    EXPECT_FALSE(InstructionsMayInterfere(ordering, param, xla_while));

    EXPECT_FALSE(InstructionsMayInterfere(ordering, body_param, cond_param));
    EXPECT_FALSE(InstructionsMayInterfere(ordering, body_param, add));
    EXPECT_FALSE(InstructionsMayInterfere(ordering, body_param, xla_while));

    EXPECT_FALSE(InstructionsMayInterfere(ordering, cond_param, add));
    EXPECT_FALSE(InstructionsMayInterfere(ordering, cond_param, xla_while));

    EXPECT_FALSE(InstructionsMayInterfere(ordering, add, xla_while));
  }
}

TEST_P(HloDataflowAnalysisTest, NonElementwiseOperand) {
  // A chain of operations with two elementwise and one non-elementwise. The
  // elementwise op should not interfere with its operand, while the
  // non-elementwise op should interfere. Entry params always interfere.
  //
  // param --> exp -> negate -> reverse
  //
  auto builder = HloComputation::Builder(TestName());
  auto param = builder.AddInstruction(
      HloInstruction::CreateParameter(0, vector_shape_, "param"));
  auto exp = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kExp, param));
  auto negate = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kNegate, exp));
  auto reverse = builder.AddInstruction(
      HloInstruction::CreateReverse(vector_shape_, negate, {0}));

  module_->AddEntryComputation(builder.Build());
  RunAnalysis(GetParam());

  DependencyHloOrdering ordering(module_.get());

  EXPECT_FALSE(InstructionsMayInterfere(ordering, param, exp));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param, reverse));

  // Negate is elementwise, so doesn't interfere with its operand.
  // Reverse is non-elementwise, so does interfere with its operand.
  EXPECT_FALSE(InstructionsMayInterfere(ordering, exp, negate));
  EXPECT_TRUE(InstructionsMayInterfere(ordering, negate, reverse));
}

TEST_P(HloDataflowAnalysisTest, OverlappedValues) {
  // Verify simultaneously live values interfere (exp and negate).
  //
  // param --> negate -> add
  //     \---> exp -----/
  //
  auto builder = HloComputation::Builder(TestName());
  auto param = builder.AddInstruction(
      HloInstruction::CreateParameter(0, vector_shape_, "param"));
  auto negate = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kNegate, param));
  auto exp = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kExp, param));
  auto add = builder.AddInstruction(HloInstruction::CreateBinary(
      vector_shape_, HloOpcode::kAdd, negate, exp));

  module_->AddEntryComputation(builder.Build());
  RunAnalysis(GetParam());

  DependencyHloOrdering ordering(module_.get());

  EXPECT_TRUE(InstructionsMayInterfere(ordering, param, negate));
  EXPECT_TRUE(InstructionsMayInterfere(ordering, param, exp));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param, add));

  // Negate and exp interfere with each other, but not with add.
  EXPECT_TRUE(InstructionsMayInterfere(ordering, negate, exp));
  EXPECT_TRUE(InstructionsMayInterfere(ordering, exp, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, negate, add));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, add, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, exp, add));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, add, exp));
}

TEST_P(HloDataflowAnalysisTest, OverlappedValuesSequentialOrder) {
  // Identical to the test OverlappedValue but using a sequential ordering of
  // HLO instructions.
  //
  // param --> negate -> add
  //     \---> exp -----/
  //
  // Sequential order:
  //  param, negate, exp, add
  //
  // Liveness is identical to the DependencyHloOrdering.
  auto builder = HloComputation::Builder(TestName());
  auto param = builder.AddInstruction(
      HloInstruction::CreateParameter(0, vector_shape_, "param"));
  auto negate = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kNegate, param));
  auto exp = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kExp, param));
  auto add = builder.AddInstruction(HloInstruction::CreateBinary(
      vector_shape_, HloOpcode::kAdd, negate, exp));

  auto entry = module_->AddEntryComputation(builder.Build());
  RunAnalysis(GetParam());

  SequentialHloOrdering::HloModuleSequence sequence;
  std::vector<const HloInstruction*> order = {param, negate, exp, add};
  sequence.emplace(entry, order);

  SequentialHloOrdering ordering(module_.get(), sequence);

  EXPECT_TRUE(InstructionsMayInterfere(ordering, param, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param, exp));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, param, add));

  // Negate and exp interfere with each other, but not with add.
  EXPECT_TRUE(InstructionsMayInterfere(ordering, negate, exp));
  EXPECT_TRUE(InstructionsMayInterfere(ordering, exp, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, negate, add));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, add, negate));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, exp, add));
  EXPECT_FALSE(InstructionsMayInterfere(ordering, add, exp));
}

TEST_P(HloDataflowAnalysisTest, EmbeddedComputationInterference) {
  // Test MayInterfere() for embedded computation, specifically the interference
  // of values in different computations.
  //
  // embedded_computation:
  //   %embedded_param = Param(0)
  //   %embedded_log = Log(%embedded_param)
  //
  // entry computation:
  //   %param = Param(0)
  //   %negate = Negate(%param)
  //   %exp = Negate(%exp)
  //   %call = Call(embedded_computation, {%exp})
  //   %add = Add(%negate, %call)
  //
  // Note %negate is live across the call and should interfere with all values
  // in the embedded computation.
  auto embedded_builder = HloComputation::Builder(TestName() + "_embedded");
  auto embedded_param = embedded_builder.AddInstruction(
      HloInstruction::CreateParameter(0, vector_shape_, "embedded_param"));
  auto embedded_log =
      embedded_builder.AddInstruction(HloInstruction::CreateUnary(
          vector_shape_, HloOpcode::kLog, embedded_param));
  auto embedded_computation =
      module_->AddEmbeddedComputation(embedded_builder.Build());

  auto builder = HloComputation::Builder(TestName());
  auto param = builder.AddInstruction(
      HloInstruction::CreateParameter(0, vector_shape_, "param"));
  auto negate = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kNegate, param));
  auto exp = builder.AddInstruction(
      HloInstruction::CreateUnary(vector_shape_, HloOpcode::kExp, param));
  auto call = builder.AddInstruction(
      HloInstruction::CreateCall(vector_shape_, {exp}, embedded_computation));
  builder.AddInstruction(HloInstruction::CreateBinary(
      vector_shape_, HloOpcode::kAdd, negate, call));
  module_->AddEntryComputation(builder.Build());
  RunAnalysis(GetParam());

  DependencyHloOrdering ordering(module_.get());

  // Exp only use is the call so it should not interfere with values inside the
  // embedded computation.
  EXPECT_FALSE(InstructionsMayInterfere(ordering, exp, embedded_log));

  // Negate is live across the call and should interfere with values in the
  // embedded computation
  EXPECT_TRUE(InstructionsMayInterfere(ordering, negate, embedded_log));
}

INSTANTIATE_TEST_CASE_P(HloDataflowAnalysisInstantiation,
                        HloDataflowAnalysisTest,
                        ::testing::Values(false, true));

}  // namespace
}  // namespace xla