aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/hlo_cost_analysis.cc
blob: a502fff9a0f1e40065746f2193bf76b1adefdb31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/hlo_cost_analysis.h"

#include <cmath>

#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/compiler/xla/window_util.h"
#include "tensorflow/core/lib/core/bits.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/map_util.h"

namespace xla {

constexpr char HloCostAnalysis::kFlopsKey[];
constexpr char HloCostAnalysis::kTranscendentalsKey[];
constexpr char HloCostAnalysis::kBytesAccessedKey[];
constexpr char HloCostAnalysis::kOptimalSecondsKey[];

HloCostAnalysis::HloCostAnalysis(const ShapeSizeFunction& shape_size)
    : HloCostAnalysis(shape_size, {}) {}

HloCostAnalysis::HloCostAnalysis(const ShapeSizeFunction& shape_size,
                                 const Properties& per_second_rates)
    : shape_size_(shape_size), per_second_rates_(per_second_rates) {}

Status HloCostAnalysis::Preprocess(const HloInstruction* hlo) {
  // Set current instruction cost values to reasonable default values. Each
  // handler can overwrite these values. In Postprocess, these values are
  // accumulated and written to the per-instruction maps.
  current_properties_.clear();
  current_should_compute_bottleneck_time_ = true;

  // The default number of bytes accessed for an instruction is the sum of the
  // sizes of the inputs and outputs. The default ShapeUtil::ByteSizeOf does not
  // handle opaque types.
  float bytes_accessed = GetShapeSize(hlo->shape());
  for (const HloInstruction* operand : hlo->operands()) {
    bytes_accessed += GetShapeSize(operand->shape());
  }
  current_properties_[kBytesAccessedKey] = bytes_accessed;

  return Status::OK();
}

Status HloCostAnalysis::Postprocess(const HloInstruction* hlo) {
  if (current_should_compute_bottleneck_time_) {
    // Compute the time as the time of the bottleneck, i.e. the slowest property
    // given the per-second rate of each property.
    float optimal_seconds = 0.0f;
    for (const auto& property : current_properties_) {
      if (property.first != kOptimalSecondsKey) {
        optimal_seconds = std::max(
            optimal_seconds,
            property.second /
                GetProperty(property.first, per_second_rates_, INFINITY));
      }
    }
    current_properties_[kOptimalSecondsKey] = optimal_seconds;
  }

  TF_RET_CHECK(hlo_properties_.emplace(hlo, current_properties_).second);
  for (const auto& property : current_properties_) {
    properties_sum_[property.first] += property.second;
  }

  return Status::OK();
}

Status HloCostAnalysis::HandleElementwiseOp(
    const HloInstruction* hlo_instruction) {
  const auto& shape = hlo_instruction->shape();
  // For element-wise operations, the number of computations is the same as the
  // number of elements in the output shape.
  auto computation_count = ShapeUtil::ElementsIn(shape);
  auto opcode = hlo_instruction->opcode();
  // We treat transcendental operations separately since one transcendental
  // operation can correspond to several floating point ops.
  if (opcode == HloOpcode::kExp || opcode == HloOpcode::kPower ||
      opcode == HloOpcode::kTanh || opcode == HloOpcode::kSin ||
      opcode == HloOpcode::kCos) {
    current_properties_[kTranscendentalsKey] = computation_count;
  } else {
    // Note: transcendental operations are considered a separate category from
    // FLOPs.
    current_properties_[kFlopsKey] = computation_count;
  }
  return Status::OK();
}

/*static*/ float HloCostAnalysis::GetProperty(const string& key,
                                              const Properties& properties,
                                              const float default_value) {
  auto key_value = properties.find(key);
  return key_value == properties.end() ? default_value : key_value->second;
}

/*static*/ float HloCostAnalysis::GetPropertyForHlo(
    const HloInstruction& hlo, const string& key,
    const HloToProperties& hlo_to_properties) {
  auto it = hlo_to_properties.find(&hlo);
  if (it == hlo_to_properties.end()) {
    return 0.0f;
  } else {
    return GetProperty(key, it->second);
  }
}

int64 HloCostAnalysis::GetShapeSize(const Shape& shape) const {
  if (!LayoutUtil::HasLayout(shape)) {
    return 0;
  }
  return shape_size_(shape);
}

Status HloCostAnalysis::HandleElementwiseUnary(const HloInstruction* hlo) {
  return HandleElementwiseOp(hlo);
}

Status HloCostAnalysis::HandleElementwiseBinary(const HloInstruction* hlo) {
  return HandleElementwiseOp(hlo);
}

Status HloCostAnalysis::HandleCompare(const HloInstruction* compare) {
  return HandleElementwiseOp(compare);
}

Status HloCostAnalysis::HandleClamp(const HloInstruction* clamp) {
  return HandleElementwiseOp(clamp);
}

Status HloCostAnalysis::HandleReducePrecision(const HloInstruction* hlo) {
  return HandleElementwiseOp(hlo);
}

Status HloCostAnalysis::HandleParameter(const HloInstruction*) {
  current_should_compute_bottleneck_time_ = false;
  current_properties_[kBytesAccessedKey] = 0;
  current_properties_[kOptimalSecondsKey] = 0;
  return Status::OK();
}

Status HloCostAnalysis::HandleConstant(const HloInstruction*) {
  current_should_compute_bottleneck_time_ = false;
  current_properties_[kBytesAccessedKey] = 0;
  current_properties_[kOptimalSecondsKey] = 0;
  return Status::OK();
}

Status HloCostAnalysis::HandleIota(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleGetTupleElement(const HloInstruction*) {
  // GetTupleElement forwards a pointer and does not touch each element in the
  // output.
  current_should_compute_bottleneck_time_ = false;
  current_properties_[kBytesAccessedKey] = 0;
  current_properties_[kOptimalSecondsKey] = 0;
  return Status::OK();
}

Status HloCostAnalysis::HandleSelect(const HloInstruction* hlo) {
  return HandleElementwiseOp(hlo);
}

Status HloCostAnalysis::HandleTupleSelect(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleReverse(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleSlice(const HloInstruction* slice) {
  current_properties_[kBytesAccessedKey] = GetShapeSize(slice->shape()) * 2;
  return Status::OK();
}

Status HloCostAnalysis::HandleDynamicSlice(
    const HloInstruction* dynamic_slice) {
  current_properties_[kBytesAccessedKey] =
      GetShapeSize(dynamic_slice->shape()) * 2;
  return Status::OK();
}

Status HloCostAnalysis::HandleDynamicUpdateSlice(
    const HloInstruction* dynamic_update_slice) {
  current_properties_[kBytesAccessedKey] =
      GetShapeSize(dynamic_update_slice->operand(1)->shape()) * 2;
  return Status::OK();
}

Status HloCostAnalysis::HandleTuple(const HloInstruction* tuple) {
  // The tuple instruction only gathers pointers from inputs (it doesn't iterate
  // through them). The memory touched is then only the size of the output
  // index table of the tuple.

  current_properties_[kBytesAccessedKey] = GetShapeSize(tuple->shape());
  return Status::OK();
}

Status HloCostAnalysis::HandleConcatenate(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleConvert(const HloInstruction* convert) {
  return HandleElementwiseOp(convert);
}

Status HloCostAnalysis::HandleCopy(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleDomain(const HloInstruction* domain) {
  // Domain does not have any computation or data transfer.
  current_should_compute_bottleneck_time_ = false;
  current_properties_[kBytesAccessedKey] = 0;
  current_properties_[kOptimalSecondsKey] = 0;
  return Status::OK();
}

Status HloCostAnalysis::HandleDot(const HloInstruction* dot) {
  const Shape& lhs_shape = dot->operand(0)->shape();
  const Shape& rhs_shape = dot->operand(1)->shape();
  const DotDimensionNumbers& dnums = dot->dot_dimension_numbers();
  // Count of elements along the reduction dimension (last dimension for the
  // rhs).
  int64 reduction_width =
      lhs_shape.dimensions(dnums.lhs_contracting_dimensions(0));
  // First divide by reduction width before multiplying by rhs elements to avoid
  // overflow.
  int64 fma_count;
  if (reduction_width == 0) {
    fma_count = 0;
  } else {
    fma_count = (ShapeUtil::ElementsIn(lhs_shape) / reduction_width) *
                ShapeUtil::ElementsIn(rhs_shape);
  }

  // We count an FMA operation as 2 floating point operations.
  current_properties_[kFlopsKey] = kFmaFlops * fma_count;
  return Status::OK();
}

Status HloCostAnalysis::HandleInfeed(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleOutfeed(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleMap(const HloInstruction* map) {
  // Compute properties of the mapped function.
  TF_ASSIGN_OR_RETURN(const Properties sub_properties,
                      ProcessSubcomputation(map->to_apply()));

  // Compute the cost of all elements for this Map operation.
  const int64 element_count = ShapeUtil::ElementsIn(map->shape());
  for (const auto& property : sub_properties) {
    if (property.first != kBytesAccessedKey) {
      current_properties_[property.first] = property.second * element_count;
    }
  }
  return Status::OK();
}

Status HloCostAnalysis::HandleReduce(const HloInstruction* reduce) {
  HloComputation* function = reduce->to_apply();
  // Compute the cost of the user function.
  TF_ASSIGN_OR_RETURN(const Properties sub_properties,
                      ProcessSubcomputation(function));

  // Compute the cost of all elements for this Reduce operation.
  // This counts the number of times the reduction function is applied, so it
  // does not need to be multiplied by the number of input tensors - that's
  // already "priced in" by the sub-computation doing more work.
  auto arg = reduce->operand(0);
  auto output_shape = ShapeUtil::IsArray(reduce->shape())
                          ? reduce->shape()
                          : reduce->shape().tuple_shapes(0);
  int64 reduction_count =
      ShapeUtil::ElementsIn(arg->shape()) - ShapeUtil::ElementsIn(output_shape);
  for (const auto& property : sub_properties) {
    if (property.first != kBytesAccessedKey) {
      current_properties_[property.first] = property.second * reduction_count;
    }
  }
  return Status::OK();
}

Status HloCostAnalysis::HandleReduceWindow(
    const HloInstruction* reduce_window) {
  const Window& window = reduce_window->window();
  auto function = reduce_window->to_apply();
  // Compute the properties of the reduction function.
  TF_ASSIGN_OR_RETURN(const Properties sub_properties,
                      ProcessSubcomputation(function));

  // Compute the cost of all elements for this ReduceWindow operation. For each
  // output element there are window_size - 1 reductions to perform.
  int64 window_element_count = 1;
  for (const auto& dimension : window.dimensions()) {
    window_element_count *= dimension.size();
  }
  const int64 output_element_count =
      ShapeUtil::ElementsIn(reduce_window->shape());
  const int64 reduction_count =
      (window_element_count - 1) * output_element_count;
  for (const auto& property : sub_properties) {
    if (property.first != kBytesAccessedKey) {
      current_properties_[property.first] = property.second * reduction_count;
    }
  }
  return Status::OK();
}

Status HloCostAnalysis::HandleSelectAndScatter(
    const HloInstruction* instruction) {
  // Compute the properties of the select and scatter function.
  // Compute the properties of the reduction function.
  TF_ASSIGN_OR_RETURN(const Properties select_properties,
                      ProcessSubcomputation(instruction->select()));
  TF_ASSIGN_OR_RETURN(const Properties scatter_properties,
                      ProcessSubcomputation(instruction->scatter()));

  // Compute the cost of all elements for this operation. For each scatter
  // source element there are window_size - 1 select computations to perform and
  // 1 scatter computation to perform.
  const auto source = instruction->operand(1);
  const auto source_element_count = ShapeUtil::ElementsIn(source->shape());
  int64 window_element_count = 1;
  for (const auto& dimension : instruction->window().dimensions()) {
    window_element_count *= dimension.size();
  }
  const int64 select_count = source_element_count * (window_element_count - 1);
  for (const auto& property : select_properties) {
    if (property.first != kBytesAccessedKey) {
      current_properties_[property.first] += property.second * select_count;
    }
  }
  for (const auto& property : scatter_properties) {
    if (property.first != kBytesAccessedKey) {
      current_properties_[property.first] +=
          property.second * source_element_count;
    }
  }
  return Status::OK();
}

Status HloCostAnalysis::HandleBitcast(const HloInstruction*) {
  // A bitcast does no computation and touches no memory.
  current_properties_[kBytesAccessedKey] = 0;
  current_properties_[kOptimalSecondsKey] = 0;
  return Status::OK();
}

Status HloCostAnalysis::HandleBroadcast(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandlePad(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleSend(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleSendDone(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleRecv(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleRecvDone(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleReshape(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleBatchNormTraining(const HloInstruction*) {
  // TODO(b/62294698): Implement cost analysis for batch-norm-training.
  return Status::OK();
}

Status HloCostAnalysis::HandleBatchNormInference(const HloInstruction*) {
  // TODO(b/62294698): Implement cost analysis for batch-norm-inference.
  return Status::OK();
}

Status HloCostAnalysis::HandleBatchNormGrad(const HloInstruction*) {
  // TODO(b/62294698): Implement cost analysis for batch-norm-grad.
  return Status::OK();
}

Status HloCostAnalysis::HandleTranspose(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleAfterAll(const HloInstruction*) {
  return Status::OK();
}

Status HloCostAnalysis::HandleConvolution(const HloInstruction* convolution) {
  auto lhs = convolution->operand(0);
  auto rhs = convolution->operand(1);
  Window window = convolution->window();
  const auto& result_shape = convolution->shape();
  const Shape& lhs_shape = lhs->shape();
  const Shape& rhs_shape = rhs->shape();

  const auto& dnums = convolution->convolution_dimension_numbers();

  const int64 input_batch_dim = dnums.input_batch_dimension();
  const int64 input_feature_dim = dnums.input_feature_dimension();
  const int64 output_feature_dim = dnums.output_feature_dimension();
  const int64 input_feature =
      ShapeUtil::GetDimension(lhs_shape, input_feature_dim);
  const int64 output_feature =
      ShapeUtil::GetDimension(result_shape, output_feature_dim);
  const int64 batch = ShapeUtil::GetDimension(lhs_shape, input_batch_dim);

  DimensionVector kernel_limits;
  DimensionVector output_limits;
  DimensionVector input_limits;
  if (window.dimensions().empty()) {
    window = window_util::MakeWindow({1});
    kernel_limits.push_back(1);
    output_limits.push_back(1);
    input_limits.push_back(1);
  } else {
    for (int64 spatial_dimension = 0;
         spatial_dimension < window.dimensions_size(); ++spatial_dimension) {
      // Spatial dimension number for kernel (rhs).
      const int64 kernel_spatial_dim =
          dnums.kernel_spatial_dimensions(spatial_dimension);
      const int64 kernel_limit = rhs_shape.dimensions(kernel_spatial_dim);
      kernel_limits.push_back(kernel_limit);

      // Spatial dimension number for output.
      const int64 output_spatial_dim =
          dnums.output_spatial_dimensions(spatial_dimension);
      const int64 output_limit = result_shape.dimensions(output_spatial_dim);
      output_limits.push_back(output_limit);

      // Spatial dimension number for input (lhs).
      const int64 input_spatial_dim =
          dnums.input_spatial_dimensions(spatial_dimension);
      const int64 input_limit = lhs_shape.dimensions(input_spatial_dim);
      input_limits.push_back(input_limit);
    }
  }

  DimensionVector valid_position_counts;

  // Loop over each spatial dimension.
  for (int64 spatial_dimension = 0;
       spatial_dimension < window.dimensions_size(); ++spatial_dimension) {
    int64 valid_position_count = 0;
    // Loop over each point in the kernel.
    for (int64 kernel_idx = 0; kernel_idx < kernel_limits[spatial_dimension];
         ++kernel_idx) {
      // Loop over each point in the output.
      for (int64 output_idx = 0; output_idx < output_limits[spatial_dimension];
           ++output_idx) {
        // Calculate lhs (input) index without taking base dilation into
        // account.
        const auto& window_dim = window.dimensions(spatial_dimension);
        const int64 undilated_index = output_idx * window_dim.stride() -
                                      window_dim.padding_low() +
                                      kernel_idx * window_dim.window_dilation();

        // Calculate the actual lhs (input) index after dilation. Avoid the
        // division as an optimization.
        const int64 lhs_spatial_index =
            window_dim.base_dilation() > 1
                ? undilated_index / window_dim.base_dilation()
                : undilated_index;

        // Skip if the lhs (input) index is to be dilated.
        if (undilated_index != lhs_spatial_index * window_dim.base_dilation()) {
          continue;
        }

        // Skip if input index is not in bound.
        if (lhs_spatial_index < 0 ||
            lhs_spatial_index >= input_limits[spatial_dimension]) {
          continue;
        }

        valid_position_count += 1;
      }
    }
    valid_position_counts.push_back(valid_position_count);
  }

  const int64 fma_count = (input_feature / convolution->feature_group_count()) *
                          output_feature * batch *
                          Product(valid_position_counts);
  current_properties_[kFlopsKey] = fma_count * kFmaFlops;
  return Status::OK();
}

Status HloCostAnalysis::HandleFft(const HloInstruction* fft) {
  auto real_shape =
      ShapeUtil::IsTuple(fft->operand(0)->shape())
          ? ShapeUtil::GetTupleElementShape(fft->operand(0)->shape(), 0)
          : fft->operand(0)->shape();
  constexpr int kFmaPerComplexMul = 4;
  int64 log_factors = 1;
  for (int64 dim : fft->fft_length()) {
    log_factors *= tensorflow::Log2Floor(dim);
  }
  current_properties_[kFlopsKey] = kFmaFlops * kFmaPerComplexMul * log_factors *
                                   ShapeUtil::ElementsIn(real_shape);
  return Status::OK();
}

Status HloCostAnalysis::HandleCrossReplicaSum(const HloInstruction* crs) {
  // We assume 2 replicas, so that each output element is the sum of two input
  // elements.
  //
  // TODO(b/33004697): Compute correct cost here, taking the actual number of
  // replicas into account.
  double flops = 0.0;
  ShapeUtil::ForEachSubshape(crs->shape(),
                             [&](const Shape& subshape, const ShapeIndex&) {
                               if (ShapeUtil::IsArray(subshape)) {
                                 flops += ShapeUtil::ElementsIn(subshape);
                               }
                             });
  current_properties_[kFlopsKey] = flops;
  return Status::OK();
}

Status HloCostAnalysis::HandleAllToAll(const HloInstruction* hlo) {
  return Status::OK();
}

Status HloCostAnalysis::HandleCollectivePermute(const HloInstruction* /*hlo*/) {
  return Status::OK();
}

Status HloCostAnalysis::HandleRng(const HloInstruction* random) {
  // TODO(b/26346211): Implement better estimates for the RNG cost, since the
  // cost changes with the implementation and the distribution. For now, assume
  // the cost of each RNG is same as a transcendental operation.
  current_properties_[kTranscendentalsKey] =
      ShapeUtil::ElementsIn(random->shape());
  return Status::OK();
}

Status HloCostAnalysis::HandleFusion(const HloInstruction* fusion) {
  TF_ASSIGN_OR_RETURN(
      current_properties_,
      ProcessSubcomputation(fusion->fused_instructions_computation()));

  // Fusion nodes that produce a tuple also produce the entries in the tuple.
  // Ignore the memory accessed inside fused ops, since fusion is supposed to
  // prevent intermediate data from touching slow memory.
  current_properties_[kBytesAccessedKey] = 0;
  ShapeUtil::ForEachSubshape(
      fusion->shape(),
      [this](const Shape& subshape, const ShapeIndex& /*shape_index*/) {
        current_properties_[kBytesAccessedKey] += GetShapeSize(subshape);
      });

  for (const HloInstruction* operand : fusion->operands()) {
    current_properties_[kBytesAccessedKey] += GetShapeSize(operand->shape());
  }

  return Status::OK();
}

Status HloCostAnalysis::HandleCall(const HloInstruction* call) {
  TF_ASSIGN_OR_RETURN(current_properties_,
                      ProcessSubcomputation(call->to_apply()));
  current_should_compute_bottleneck_time_ = false;
  return Status::OK();
}

Status HloCostAnalysis::HandleCustomCall(const HloInstruction*) {
  // Mark applicable fields as "unknown", since we don't know what CustomCall
  // does.  This is better than returning an error, which would stop iteration,
  // and therefore would prevent us from getting *any* stats for a computation
  // which contains a CustomCall.
  current_properties_[kOptimalSecondsKey] = -1;
  current_properties_[kBytesAccessedKey] = -1;
  current_properties_[kFlopsKey] = -1;
  current_should_compute_bottleneck_time_ = false;
  return Status::OK();
}

Status HloCostAnalysis::HandleSort(const HloInstruction* sort) {
  // This assumes a comparison based N*log(N) algorithm. As for all ops, the
  // actual properties of the op depend on the backend implementation.
  int64 elements = ShapeUtil::ElementsIn(sort->operand(0)->shape());
  current_properties_[kFlopsKey] = elements * tensorflow::Log2Ceiling(elements);
  return Status::OK();
}

Status HloCostAnalysis::HandleWhile(const HloInstruction* xla_while) {
  // Since the number of iterations of the while node will not always be
  // something that we can statically analyze, we cannot precisely compute the
  // cost of a while node. For now compute the cost of a single iteration.
  //
  // TODO(b/26346211): Improve the cost analysis for while nodes.
  TF_ASSIGN_OR_RETURN(const Properties body_properties,
                      ProcessSubcomputation(xla_while->while_body()));

  TF_ASSIGN_OR_RETURN(const Properties condition_properties,
                      ProcessSubcomputation(xla_while->while_condition()));

  current_properties_.clear();
  for (const auto& property : body_properties) {
    current_properties_[property.first] += property.second;
  }
  for (const auto& property : condition_properties) {
    current_properties_[property.first] += property.second;
  }
  current_should_compute_bottleneck_time_ = false;

  return Status::OK();
}

Status HloCostAnalysis::HandleConditional(const HloInstruction* conditional) {
  // Compute the cost of the true and false computations and take the maximum
  // from those for each property.
  TF_ASSIGN_OR_RETURN(const Properties true_computation_properties,
                      ProcessSubcomputation(conditional->true_computation()));
  TF_ASSIGN_OR_RETURN(const Properties false_computation_properties,
                      ProcessSubcomputation(conditional->false_computation()));
  current_properties_ = true_computation_properties;
  for (const auto& property : false_computation_properties) {
    if (!tensorflow::gtl::InsertIfNotPresent(&current_properties_, property)) {
      current_properties_[property.first] =
          std::max(current_properties_[property.first], property.second);
    }
  }
  current_should_compute_bottleneck_time_ = false;

  return Status::OK();
}

Status HloCostAnalysis::HandleGather(const HloInstruction* gather) {
  // Gather does not issue any flops.
  return Status::OK();
}

Status HloCostAnalysis::HandleScatter(const HloInstruction* scatter) {
  // TODO(b/32945756): Compute the properties of the sub-computation.
  return Status::OK();
}

Status HloCostAnalysis::FinishVisit(const HloInstruction*) {
  return Status::OK();
}

float HloCostAnalysis::flop_count() const {
  return GetProperty(kFlopsKey, properties_sum_);
}

float HloCostAnalysis::transcendental_count() const {
  return GetProperty(kTranscendentalsKey, properties_sum_);
}

float HloCostAnalysis::bytes_accessed() const {
  return GetProperty(kBytesAccessedKey, properties_sum_);
}

float HloCostAnalysis::optimal_seconds() const {
  return GetProperty(kOptimalSecondsKey, properties_sum_);
}

int64 HloCostAnalysis::flop_count(const HloInstruction& hlo) const {
  return GetPropertyForHlo(hlo, kFlopsKey, hlo_properties_);
}

int64 HloCostAnalysis::transcendental_count(const HloInstruction& hlo) const {
  return GetPropertyForHlo(hlo, kTranscendentalsKey, hlo_properties_);
}

int64 HloCostAnalysis::bytes_accessed(const HloInstruction& hlo) const {
  return GetPropertyForHlo(hlo, kBytesAccessedKey, hlo_properties_);
}

float HloCostAnalysis::optimal_seconds(const HloInstruction& hlo) const {
  return GetPropertyForHlo(hlo, kOptimalSecondsKey, hlo_properties_);
}

StatusOr<HloCostAnalysis::Properties> HloCostAnalysis::ProcessSubcomputation(
    HloComputation* computation) {
  HloCostAnalysis visitor(shape_size_, per_second_rates_);
  TF_RETURN_IF_ERROR(computation->Accept(&visitor));
  return visitor.properties();
}

}  // namespace xla