aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/gpu/nvptx_compiler.cc
blob: 5409f655896b14bfc810a6e46425812396fbb10a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/gpu/nvptx_compiler.h"

#include <stdlib.h>
#include <atomic>
#include <functional>
#include <mutex>  // NOLINT(build/c++11): only using std::call_once, not mutex.
#include <utility>

#include "absl/memory/memory.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_cat.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "tensorflow/compiler/xla/protobuf_util.h"
#include "tensorflow/compiler/xla/service/algebraic_simplifier.h"
#include "tensorflow/compiler/xla/service/batchnorm_expander.h"
#include "tensorflow/compiler/xla/service/buffer_assignment.h"
#include "tensorflow/compiler/xla/service/buffer_liveness.h"
#include "tensorflow/compiler/xla/service/call_inliner.h"
#include "tensorflow/compiler/xla/service/conditional_simplifier.h"
#include "tensorflow/compiler/xla/service/flatten_call_graph.h"
#include "tensorflow/compiler/xla/service/gpu/cudnn_batchnorm_rewriter.h"
#include "tensorflow/compiler/xla/service/gpu/cudnn_convolution_algorithm_picker.h"
#include "tensorflow/compiler/xla/service/gpu/cudnn_convolution_rewriter.h"
#include "tensorflow/compiler/xla/service/gpu/cudnn_fused_convolution_rewriter.h"
#include "tensorflow/compiler/xla/service/gpu/fusion_merger.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_constants.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_copy_insertion.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_executable.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_hlo_schedule.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_hlo_support_checker.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_layout_assignment.h"
#include "tensorflow/compiler/xla/service/gpu/instruction_fusion.h"
#include "tensorflow/compiler/xla/service/gpu/ir_emission_utils.h"
#include "tensorflow/compiler/xla/service/gpu/ir_emitter_context.h"
#include "tensorflow/compiler/xla/service/gpu/ir_emitter_unnested.h"
#include "tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/nvptx_backend_lib.h"
#include "tensorflow/compiler/xla/service/gpu/multi_output_fusion.h"
#include "tensorflow/compiler/xla/service/gpu/pad_for_tensor_cores.h"
#include "tensorflow/compiler/xla/service/gpu/pad_insertion.h"
#include "tensorflow/compiler/xla/service/gpu/partition_assignment.h"
#include "tensorflow/compiler/xla/service/gpu/stream_assignment.h"
#include "tensorflow/compiler/xla/service/gpu/stream_executor_util.h"
#include "tensorflow/compiler/xla/service/gpu/thunk_schedule.h"
#include "tensorflow/compiler/xla/service/hlo.pb.h"
#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/hlo_constant_folding.h"
#include "tensorflow/compiler/xla/service/hlo_cse.h"
#include "tensorflow/compiler/xla/service/hlo_dce.h"
#include "tensorflow/compiler/xla/service/hlo_element_type_converter.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/service/hlo_pass_fix.h"
#include "tensorflow/compiler/xla/service/hlo_pass_pipeline.h"
#include "tensorflow/compiler/xla/service/hlo_proto_util.h"
#include "tensorflow/compiler/xla/service/hlo_subcomputation_unification.h"
#include "tensorflow/compiler/xla/service/hlo_verifier.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_util.h"
#include "tensorflow/compiler/xla/service/reduce_precision_insertion.h"
#include "tensorflow/compiler/xla/service/reshape_mover.h"
#include "tensorflow/compiler/xla/service/transpose_folding.h"
#include "tensorflow/compiler/xla/service/tuple_simplifier.h"
#include "tensorflow/compiler/xla/service/while_loop_constant_sinking.h"
#include "tensorflow/compiler/xla/service/while_loop_simplifier.h"
#include "tensorflow/compiler/xla/service/zero_sized_hlo_elimination.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/gtl/cleanup.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/platform/cuda_libdevice_path.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/regexp.h"
#include "tensorflow/core/platform/stream_executor_no_cuda.h"
#include "tensorflow/core/platform/subprocess.h"
#include "tensorflow/core/platform/tracing.h"
#include "tensorflow/stream_executor/cuda/cuda_diagnostics.h"

namespace xla {
namespace gpu {

/* static */ const char* NVPTXCompiler::kTargetTriple = "nvptx64-nvidia-cuda";
/* static */ const char* NVPTXCompiler::kDataLayout =
    "e-i64:64-i128:128-v16:16-v32:32-n16:32:64";

namespace {

namespace tracing = tensorflow::tracing;

// Returns the directory containing nvvm libdevice files.  config_cuda_data_dir
// should be equal to config().debug_options().xla_gpu_cuda_data_dir() of the
// HloModule being compiled.
string GetLibdeviceDir(const string& config_cuda_data_dir) {
  std::vector<string> potential_libdevice_dirs;
  if (!config_cuda_data_dir.empty()) {
    potential_libdevice_dirs.push_back(config_cuda_data_dir);
  }
  potential_libdevice_dirs.push_back(tensorflow::LibdeviceRoot());

  // Tries all potential libdevice directories in the order they are inserted.
  // Returns the first directory that exists in the file system.
  for (const string& potential_libdevice_dir : potential_libdevice_dirs) {
    if (tensorflow::Env::Default()->IsDirectory(potential_libdevice_dir).ok()) {
      VLOG(2) << "Found libdevice dir " << potential_libdevice_dir;
      return potential_libdevice_dir;
    }
    VLOG(2) << "Unable to find potential libdevice dir "
            << potential_libdevice_dir;
  }

  // Last resort: maybe in the current folder.
  return ".";
}

// Runs optimization passes on the given HLO module.
//
// It takes a compiler pointer, as passes may compile and execute HLOs on the
// fly for cuDNN verification or other purposes.
Status OptimizeHloModule(HloModule* hlo_module, se::StreamExecutor* stream_exec,
                         DeviceMemoryAllocator* device_allocator,
                         Compiler* compiler) {
  {
    HloPassPipeline pipeline("optimization");
    pipeline.AddInvariantChecker<HloVerifier>(/*layout_sensitive=*/false,
                                              /*allow_mixed_precision=*/false);
    pipeline.AddPass<GpuHloSupportChecker>();
    ReducePrecisionInsertion::AddPasses(
        &pipeline, hlo_module->config().debug_options(),
        ReducePrecisionInsertion::PassTiming::BEFORE_OPTIMIZATION);

    // TODO(b/64094172): make Call work on GPU instead of inlining.
    pipeline.AddPass<CallInliner>();
    // Convert BF16 operations to F32 operations so that the GPU backend can
    // support BF16 operations without directly implementing a BF16 lowering for
    // most ops.
    pipeline.AddPass<HloElementTypeConverter>(BF16, F32);

    {
      auto& pass =
          pipeline.AddPass<HloPassFix<HloPassPipeline>>("simplification");
      pass.AddInvariantChecker<HloVerifier>(/*layout_sensitive=*/false,
                                            /*allow_mixed_precision=*/false);

      // If cudnn batchnorms are enabled, rewrite batchnorm HLOs to cudnn calls
      // where possible.  Not every batchnorm op can be implemented as a call to
      // cudnn, so decompose any remaining batchnorm ops into a soup of HLOs.
      if (hlo_module->config().debug_options().xla_gpu_use_cudnn_batchnorm()) {
        pass.AddPass<CudnnBatchNormRewriter>();
      }
      pass.AddPass<BatchNormExpander>(
          /*rewrite_training_op=*/true,
          /*rewrite_inference_op=*/true,
          /*rewrite_grad_op=*/true);

      // BatchNormExpander can create zero-sized ops, so zero-sized HLO
      // elimination has to come after that pass.
      pipeline.AddPass<ZeroSizedHloElimination>();

      pass.AddPass<AlgebraicSimplifier>(
          /*is_layout_sensitive=*/false,
          [](const Shape&, const Shape&) { return false; });
      pass.AddPass<TupleSimplifier>();
      pass.AddPass<WhileLoopConstantSinking>();
      pass.AddPass<WhileLoopSimplifier>();
      pass.AddPass<HloDCE>();
      pass.AddPass<ReshapeMover>();
      pass.AddPass<HloConstantFolding>();
      pass.AddPass<ConditionalSimplifier>();
    }

    pipeline.AddPass<TransposeFolding>(
        [](const HloInstruction& dot,
           const TransposeFolding::OperandIndices& candidate_operands) {
          return ImplementedAsGemm(dot) ? candidate_operands
                                        : TransposeFolding::OperandIndices{};
        },
        TransposeFolding::NeverFoldTranspose);
    pipeline.AddPass<HloCSE>(/*is_layout_sensitive=*/false);
    pipeline.AddPass<HloDCE>();
    TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status());
  }

  {
    // Convert convolutions into CustomCalls to cudnn, then canonicalize them
    // (PadInsertion).
    HloPassPipeline pipeline("conv_canonicalization");
    pipeline.AddInvariantChecker<HloVerifier>(/*layout_sensitive=*/false,
                                              /*allow_mixed_precision=*/false);
    pipeline.AddPass<CudnnConvolutionRewriter>();
    pipeline.AddPass<CudnnFusedConvolutionRewriter>();
    pipeline.AddPass<PadInsertion>();
    if (IsVoltaOrLater(*stream_exec)) {
      pipeline.AddPass<PadForTensorCores>();
      // PadForTensorCores leaves behind unnecessary tuple/get-tuple-element
      // pairs that TupleSimplifier fixes.
      pipeline.AddPass<TupleSimplifier>();
    }
    // CudnnConvolutionRewriter, PadInsertion and PadForTensorCores may add
    // instructions which can be simplified by constant folding.
    pipeline.AddPass<HloConstantFolding>();
    TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status());
  }

  {
    // Run layout assignment in a separate pipeline from
    // "post-layout-assignment" because we want everything after layout
    // assignment to have a layout-sensitive invariant-checker, but
    // HloPassPipeline also runs its invariant checker before any passes are
    // run, meaning, the pipeline that contains layout assignment cannot contain
    // a layout-sensitive verifier!
    HloPassPipeline pipeline("layout assignment");
    pipeline.AddPass<GpuLayoutAssignment>(
        hlo_module->mutable_entry_computation_layout(),
        LayoutAssignment::InstructionCanChangeLayout, stream_exec);
    TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status());
  }

  {
    HloPassPipeline pipeline("post-layout_assignment");
    pipeline.AddInvariantChecker<HloVerifier>(
        /*layout_sensitive=*/true,
        /*allow_mixed_precision=*/false,
        LayoutAssignment::InstructionCanChangeLayout);

    // The LayoutAssignment pass may leave behind kCopy instructions which are
    // duplicate or NOPs, so remove them with algebraic simplification and CSE.
    pipeline.AddPass<HloPassFix<AlgebraicSimplifier>>(
        /*is_layout_sensitive=*/true,
        /*valid_bitcast_callback=*/[](const Shape&, const Shape&) {
          return true;
        });

    // Choose the fastest algorithm for each conv.
    //
    // We pick the algorithm before fusion so we can generate better HLO. After
    // CudnnConvolutionRewriter, our convolutions are CustomCalls which return a
    // tuple (conv_result, scratch_memory), and the each conv uses 0 bytes of
    // scratch:
    //
    //   customcall = (f32[...], f32[0])
    //   return gte(customcall, 0)
    //
    // The algorithm picker then chooses the best algorithm, and potentially
    // increases the scratch space.  It replaces customcall with new_tuple,
    // giving us the following:
    //
    //   new_customcall = (f32[...], f32[N])
    //   new_tuple = tuple(gte(new_customcall, 0), constant f32[0])
    //   return gte(new_tuple, 0)
    //
    // The new tuple and gte instructions then be simplified away, because
    // nobody is expected to use the scratch value.
    //
    // However, if we were to run CudnnConvolutionAlgorithmPicker after fusion
    // the gte(customcall, 0) would probably already be into a fusion node.  We
    // can't simplify across HloComputation boundaries, so in this case we
    // wouldn't be able to simplify away the new_tuple bits.
    pipeline.AddPass<CudnnConvolutionAlgorithmPicker>(
        stream_exec, device_allocator, compiler);
    // Clean up new_tuple described above.
    pipeline.AddPass<TupleSimplifier>();

    pipeline.AddPass<HloCSE>(/*is_layout_sensitive=*/true);
    TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status());
  }

  {
    HloPassFix<HloPassPipeline> fusion("fusion");
    fusion.AddInvariantChecker<HloVerifier>(
        /*layout_sensitive=*/true,
        /*allow_mixed_precision=*/false,
        LayoutAssignment::InstructionCanChangeLayout);
    fusion.AddPass<GpuInstructionFusion>(/*may_duplicate=*/false);
    fusion.AddPass<GpuInstructionFusion>(/*may_duplicate=*/true);
    fusion.AddPass<FusionMerger>();
    fusion.AddPass<GpuMultiOutputFusion>();
    fusion.AddPass<HloCSE>(/*is_layout_sensitive=*/true,
                           /*only_fusion_computations=*/true);
    fusion.AddPass<HloDCE>();
    TF_RETURN_IF_ERROR(fusion.Run(hlo_module).status());

    HloPassPipeline reduce_pipeline("reduce-precision");
    reduce_pipeline.AddInvariantChecker<HloVerifier>(
        /*is_layout_sensitive=*/true, /*allow_mixed_precision=*/false,
        LayoutAssignment::InstructionCanChangeLayout);
    ReducePrecisionInsertion::AddPasses(
        &reduce_pipeline, hlo_module->config().debug_options(),
        ReducePrecisionInsertion::PassTiming::AFTER_FUSION);
    StatusOr<bool> reduce_result = reduce_pipeline.Run(hlo_module);
    TF_RETURN_IF_ERROR(reduce_result.status());

    if (reduce_result.ValueOrDie()) {
      // Do another fusion pass, with the expectation that we may be able to
      // fuse the new ReducePrecision operations.
      TF_RETURN_IF_ERROR(fusion.Run(hlo_module).status());
    }
  }

  return Status::OK();
}

// Modifies the given HLO module so that it will be accepted by IrEmitter.
// Unlike optimization passes, the passes are necessary for correctness.
Status PrepareHloModuleForIrEmitting(HloModule* hlo_module) {
  // In some cases, we have to place the result of an instruction in a temporary
  // buffer. For instance, the buffer that holds an external parameter is
  // assumed immutable at this point, and should not be reused for output
  // (b/27180329). Therefore, in that case, we set the output to be a copy of
  // the parameter.
  HloPassPipeline pipeline("GPU-ir-emit-prepare");
  pipeline.AddInvariantChecker<HloVerifier>(
      /*layout_sensitive=*/true,
      /*allow_mixed_precision=*/false,
      LayoutAssignment::InstructionCanChangeLayout);

  // Copy insertion should be performed immediately before IR emission to avoid
  // inserting unnecessary copies (later pass adds an instruction which
  // materializes the value) or missing a necessary copy (later pass removes an
  // instruction which materializes a value). DCE must be run immediately before
  // (and sometime after) copy insertion, to avoid dead code from interfering
  // with the rewrites.
  pipeline.AddPass<HloDCE>();
  pipeline.AddPass<FlattenCallGraph>();
  pipeline.AddPass<GpuCopyInsertion>();
  return pipeline.Run(hlo_module).status();
}

// Prints a warning if the ptxas at ptxas_path has known bugs.
//
// Only prints a warning the first time it's called for a particular value of
// ptxas_path.
void WarnIfBadPtxasVersion(const string& ptxas_path) {
  static tensorflow::mutex mu(tensorflow::LINKER_INITIALIZED);
  static std::unordered_set<string>* seen_ptxas_paths GUARDED_BY(mu) =
      new std::unordered_set<string>();

  tensorflow::mutex_lock lock(mu);
  if (!seen_ptxas_paths->insert(ptxas_path).second) {
    // Already checked this ptx binary, nothing to do.
    return;
  }

  tensorflow::SubProcess ptxas;
  ptxas.SetProgram(ptxas_path, {ptxas_path, "--version"});
  ptxas.SetChannelAction(tensorflow::CHAN_STDOUT, tensorflow::ACTION_PIPE);
  if (!ptxas.Start()) {
    LOG(WARNING) << "Couldn't invoke " << ptxas_path << " --version";
    return;
  }

  string out;
  int exit_code = ptxas.Communicate(/*stdin_input=*/nullptr, &out,
                                    /*stderr_output=*/nullptr);
  if (exit_code != 0) {
    LOG(WARNING) << "Running " << ptxas_path << " --version returned "
                 << exit_code;
    return;
  }

  int64 vmaj, vmin, vdot;
  string vmaj_str, vmin_str, vdot_str;
  if (!RE2::PartialMatch(out, R"(\bV(\d+)\.(\d+)\.(\d+)\b)", &vmaj_str,
                         &vmin_str, &vdot_str) ||
      !absl::SimpleAtoi(vmaj_str, &vmaj) ||
      !absl::SimpleAtoi(vmin_str, &vmin) ||
      !absl::SimpleAtoi(vdot_str, &vdot)) {
    LOG(WARNING) << "Couldn't parse ptxas version in output of " << ptxas_path
                 << " --version:\n"
                 << out;
    return;
  }

  // We need ptxas >= 9.0 as a hard requirement, because we compile targeting
  // PTX 6.0.  An older ptxas will just fail to compile any of our code.
  //
  // ptxas 9.0 before 9.0.276 and ptxas 9.1 before 9.1.121 miscompile some
  // address calculations with large offsets (e.g. "load ptr + large_constant"),
  // b/70245379.
  //
  // ptxas 9.1.121 miscompiles some large multioutput fusions, again in a way
  // that appears related to address calculations, b/111107644.  ptxas 9.2.88
  // appears to work, as far as we can tell.
  if (vmaj < 9) {
    LOG(ERROR)
        << "You are using ptxas 8.x, but XLA requires ptxas 9.x (and strongly "
           "prefers >= 9.2.88).  Compilation of XLA kernels below will likely "
           "fail.\n\nYou do not need to update CUDA; cherry-picking the ptxas "
           "binary is sufficient.";
  } else if (std::make_tuple(vmaj, vmin, vdot) < std::make_tuple(9, 2, 88)) {
    LOG(WARNING)
        << "*** WARNING *** You are using ptxas " << vmaj << "." << vmin << "."
        << vdot
        << ", which is older than 9.2.88. ptxas 9.x before 9.2.88 is known to "
           "miscompile XLA code, leading to incorrect results or "
           "invalid-address errors.\n\nYou do not need to update to CUDA "
           "9.2.88; cherry-picking the ptxas binary is sufficient.";
  }
}

// Prints a warning if the ptx->sass JIT in the driver has known bugs.
//
// Using such a driver only a problem if we fail to use ptxas to compile our ptx
// and have to use the driver instead, so you should only call this function if
// we're going to use the driver JIT.
//
// Only prints a warning the first time it's called.
void WarnIfBadDriverJITVersion() {
  static std::once_flag run_once;
  std::call_once(run_once, [] {
    auto version_or_status = se::cuda::Diagnostician::FindKernelDriverVersion();
    if (!version_or_status.ok()) {
      LOG(WARNING) << "Couldn't read CUDA driver version.";
      return;
    }
    se::cuda::DriverVersion version = version_or_status.ValueOrDie();

    // The following versions of the driver JIT miscompile some address
    // calculations with large offsets (e.g. "load ptr + large_constant"),
    // b/70245379:
    //
    //  - 384.x before 384.108
    //  - 387.x before 387.40
    //  - 390.x before 390.10.
    //
    // In addition, only >= 396.20 contains ptxas >= 9.2.88, which contains the
    // fix for the "large multioutput fusions" miscompile, b/111107644.
    if (version < std::make_tuple(396, 20, 0)) {
      LOG(WARNING)
          << "*** WARNING *** Invoking the PTX->SASS JIT from driver version "
          << se::cuda::DriverVersionToString(version)
          << ", which is older than 396.20.0. These versions are known to "
             "miscompile XLA code, leading to incorrect results or "
             "invalid-address errors.\nXLA only uses the driver JIT if it "
             "cannot find ptxas; you don't need to update your driver if "
             "you can point XLA to ptxas 9.2.88 or newer.";
    }
  });
}

// Compiles the given PTX string using ptxas and returns the resulting machine
// code (i.e. a cubin) as a byte array.
StatusOr<std::vector<uint8>> CompilePtx(const string& ptx, int cc_major,
                                        int cc_minor) {
  tracing::ScopedActivity activity("Compile PTX", /*is_expensive=*/true);
  const string ptxas_path =
      tensorflow::io::JoinPath(tensorflow::CudaRoot(), "bin", "ptxas");
  VLOG(2) << "Using ptxas at " << ptxas_path;
  auto env = tensorflow::Env::Default();
  TF_RETURN_IF_ERROR(env->FileExists(ptxas_path));

  WarnIfBadPtxasVersion(ptxas_path);

  // Write ptx into a temporary file.
  string ptx_path;
  if (!env->LocalTempFilename(&ptx_path)) {
    return InternalError("couldn't get temp PTX file name");
  }
  auto ptx_cleaner = tensorflow::gtl::MakeCleanup([&ptx_path] {
    TF_CHECK_OK(tensorflow::Env::Default()->DeleteFile(ptx_path));
  });

  TF_RETURN_IF_ERROR(tensorflow::WriteStringToFile(env, ptx_path, ptx));
  VLOG(2) << "ptx written to: " << ptx_path;

  // Invoke ptxas and collect its output.
  string cubin_path;
  if (!env->LocalTempFilename(&cubin_path)) {
    return InternalError("couldn't get temp CUBIN file name");
  }
  auto cubin_cleaner = tensorflow::gtl::MakeCleanup([&cubin_path] {
    // CUBIN file may never be created, so the failure to delete it should not
    // produce TF error.
    tensorflow::Env::Default()->DeleteFile(cubin_path).IgnoreError();
  });
  tensorflow::SubProcess ptxas_info_dumper;
  std::vector<string> ptxas_args = {
      ptxas_path, ptx_path, "-o", cubin_path,
      absl::StrCat("-arch=sm_", cc_major, cc_minor)};
  if (VLOG_IS_ON(2)) {
    ptxas_args.push_back("-v");
  }
  ptxas_info_dumper.SetProgram(ptxas_path, ptxas_args);
  ptxas_info_dumper.SetChannelAction(tensorflow::CHAN_STDERR,
                                     tensorflow::ACTION_PIPE);
  if (!ptxas_info_dumper.Start()) {
    return InternalError("Failed to launch ptxas");
  }
  string stderr_output;
  int exit_status = ptxas_info_dumper.Communicate(
      /*stdin_input=*/nullptr, /*stdout_output=*/nullptr, &stderr_output);
  XLA_LOG_LINES(tensorflow::INFO, stderr_output);
  if (exit_status != 0) {
    return InternalError("ptxas exited with non-zero error code %d",
                         exit_status);
  }

  // Read in the result of compilation and return it as a byte vector.
  string cubin;
  TF_RETURN_IF_ERROR(tensorflow::ReadFileToString(tensorflow::Env::Default(),
                                                  cubin_path, &cubin));
  std::vector<uint8> cubin_vector(cubin.begin(), cubin.end());
  return cubin_vector;
}

}  // namespace

NVPTXCompiler::NVPTXCompiler()
    : pointer_size_(llvm::DataLayout(kDataLayout)
                        .getPointerSize(0 /* default address space */)) {}

StatusOr<std::unique_ptr<HloModule>> NVPTXCompiler::RunHloPasses(
    std::unique_ptr<HloModule> module, se::StreamExecutor* stream_exec,
    DeviceMemoryAllocator* device_allocator) {
  // We dump the post-optimization HLO in RunBackend so no need to dump it here.
  VLOG(2) << "*** HLO Before Optimization";
  XLA_VLOG_LINES(2, module->ToString());

  XLA_SCOPED_LOGGING_TIMER("NVPTXCompiler::RunHloPasses");
  tracing::ScopedActivity activity("HLO Transforms", module->name(),
                                   /*is_expensive=*/true);
  TF_RETURN_IF_ERROR(
      OptimizeHloModule(module.get(), stream_exec, device_allocator, this));
  return std::move(module);
}

StatusOr<std::unique_ptr<Executable>> NVPTXCompiler::RunBackend(
    std::unique_ptr<HloModule> module, se::StreamExecutor* stream_exec,
    DeviceMemoryAllocator* device_allocator) {
  XLA_SCOPED_LOGGING_TIMER("NVPTXCompiler::RunBackend");

  TF_RET_CHECK(stream_exec != nullptr);

  TF_RETURN_IF_ERROR(PrepareHloModuleForIrEmitting(module.get()));

  llvm::LLVMContext llvm_context;
  std::string buffer;
  llvm::raw_string_ostream error(buffer);
  llvm::DiagnosticPrinterRawOStream printer(error);
  auto DiagnosticHandler = [](const llvm::DiagnosticInfo& diag_info,
                              void* Context) {
    auto printer = static_cast<llvm::DiagnosticPrinterRawOStream*>(Context);
    diag_info.print(*printer);
  };
  llvm_context.setDiagnosticHandlerCallBack(DiagnosticHandler, &printer);

  llvm::Module llvm_module(module->name().c_str(), llvm_context);
  // Set the target triple and the data layout.
  llvm_module.setTargetTriple(kTargetTriple);
  llvm_module.setDataLayout(kDataLayout);

  // Determine the HLO schedule, which is an ordering of HLO instructions.  This
  // is used by buffer assignment to enable buffer reuse, and the same ordering
  // must also be used to determine the thunk launch schedule.
  std::unique_ptr<StreamAssignment> stream_assignment = AssignStreams(*module);
  TF_ASSIGN_OR_RETURN(
      std::unique_ptr<GpuHloSchedule> hlo_schedule,
      GpuHloSchedule::Build(*module, *stream_assignment, pointer_size_));

  // Run buffer analysis on the HLO graph. This analysis figures out which
  // temporary buffers are required to run the computation.
  TF_ASSIGN_OR_RETURN(
      std::unique_ptr<BufferAssignment> buffer_assignment,
      BufferAssigner::Run(
          module.get(), hlo_schedule->ConsumeHloOrdering(),
          BufferSizeBytesFunction(),
          /*color_alignment=*/
          [](LogicalBuffer::Color) { return kXlaAllocatedBufferAlignBytes; },
          /*allow_input_output_aliasing=*/false,
          /*allocate_buffers_for_constants=*/true));
  // BufferAssignment::Stats::ToString() and BufferAssignment::ToString()
  // include headers, so no need for us to print them ourselves.
  XLA_VLOG_LINES(1, buffer_assignment->GetStats().ToString());
  XLA_VLOG_LINES(2, buffer_assignment->ToString());
  VLOG(2) << "*** HLO After Optimization";
  XLA_VLOG_LINES(2, module->ToString());
  const string xla_dump_optimized_hlo_proto_to =
      module->config().debug_options().xla_dump_optimized_hlo_proto_to();
  if (!xla_dump_optimized_hlo_proto_to.empty()) {
    HloProto proto = MakeHloProto(*module, *buffer_assignment);
    TF_RETURN_IF_ERROR(protobuf_util::DumpProtoToDirectory(
        proto, xla_dump_optimized_hlo_proto_to, module->name()));
  }

  IrEmitterContext ir_emitter_context(module.get(), buffer_assignment.get(),
                                      &stream_exec->GetDeviceDescription(),
                                      &llvm_module);

  HloComputation* entry_computation = module->entry_computation();
  IrEmitterUnnested ir_emitter(module->config(), entry_computation,
                               &ir_emitter_context);

  TF_RETURN_IF_ERROR(ir_emitter.EmitConstantGlobals());

  {
    XLA_SCOPED_LOGGING_TIMER("NVPTXCompiler::RunBackend - IR emission");
    TF_RETURN_IF_ERROR(entry_computation->Accept(&ir_emitter));
  }

  if (user_pre_optimization_hook_) {
    TF_CHECK_OK(user_pre_optimization_hook_(llvm_module));
  }
  string ir_module_string_before_opt;
  const bool embed_ir_in_executable =
      module->config().debug_options().xla_embed_ir_in_executable();
  if (VLOG_IS_ON(2) || embed_ir_in_executable) {
    ir_module_string_before_opt = llvm_ir::DumpModuleToString(llvm_module);
    VLOG(2) << "LLVM module before optimizations:";
    XLA_VLOG_LINES(2, ir_module_string_before_opt);
  }

  const string& ir_dump_directory =
      module->config().debug_options().xla_dump_ir_to();

  if (!ir_dump_directory.empty()) {
    TF_RETURN_IF_ERROR(llvm_ir::DumpIRToDirectory(
        /*directory_name=*/ir_dump_directory,
        /*hlo_module_name=*/module->name(), llvm_module,
        /*optimized=*/false));
  }

  {
    XLA_SCOPED_LOGGING_TIMER(
        "NVPTXCompiler::RunBackend - Running LLVM verifier");

    std::string err;
    llvm::raw_string_ostream err_stream(err);

    // verifyModule() returns true if the module is broken.
    TF_RET_CHECK(!llvm::verifyModule(llvm_module, &err_stream))
        << "Invalid LLVM IR before optimizations:\n"
        << err_stream.str()
        << "\nThis probably indicates a bug in the HLO -> LLVM IR lowering. "
           "Rerun with --xla_dump_ir_to to get the IR. ";
  }

  string libdevice_dir;
  {
    tensorflow::mutex_lock lock(mutex_);

    // Find the directory containing libdevice.  To avoid searching for it every
    // time, we have a one-element cache, keyed on the module's config's
    // cuda_data_dir.
    const auto& config_cuda_data_dir =
        module->config().debug_options().xla_gpu_cuda_data_dir();
    if (cached_libdevice_dir_.empty() ||
        cached_cuda_data_dir_ != config_cuda_data_dir) {
      cached_cuda_data_dir_ = config_cuda_data_dir;
      cached_libdevice_dir_ = GetLibdeviceDir(config_cuda_data_dir);
    }
    libdevice_dir = cached_libdevice_dir_;
  }
  int cc_major, cc_minor;
  if (!stream_exec->GetDeviceDescription().cuda_compute_capability(&cc_major,
                                                                   &cc_minor)) {
    LOG(WARNING)
        << "Couldn't get compute capability for device; assuming sm_20.";
    cc_major = 2;
    cc_minor = 0;
  }

  string ptx;
  {
    XLA_SCOPED_LOGGING_TIMER("NVPTXCompiler::RunBackend - CompileToPtx");
    TF_ASSIGN_OR_RETURN(ptx, CompileToPtx(&llvm_module, {cc_major, cc_minor},
                                          module->config(), libdevice_dir));
  }

  if (!ir_dump_directory.empty()) {
    TF_RETURN_IF_ERROR(llvm_ir::DumpIRToDirectory(
        /*directory_name=*/ir_dump_directory,
        /*hlo_module_name=*/module->name(), llvm_module,
        /*optimized=*/true));
  }

  if (user_post_optimization_hook_) {
    TF_CHECK_OK(user_post_optimization_hook_(llvm_module));
  }
  VLOG(2) << "LLVM module after optimizations:";
  XLA_VLOG_LINES(2, llvm_ir::DumpModuleToString(llvm_module));
  VLOG(2) << "PTX:";
  XLA_VLOG_LINES(2, ptx);

  // Write PTX to IR dump directory, if IR dumping was requested.
  if (!ir_dump_directory.empty()) {
    const string ptx_outfile = tensorflow::io::JoinPath(
        ir_dump_directory, absl::StrCat(module->name(), ".ptx"));
    auto status = [&] {
      auto* env = tensorflow::Env::Default();
      TF_RETURN_IF_ERROR(env->RecursivelyCreateDir(ir_dump_directory));
      TF_RETURN_IF_ERROR(tensorflow::WriteStringToFile(env, ptx_outfile, ptx));
      return Status::OK();
    }();
    if (!status.ok()) {
      LOG(WARNING) << "Couldn't dump PTX for module " << module->name()
                   << " to " << ptx_outfile << ": " << status;
    }
  }

  const std::vector<uint8> cubin =
      CompilePtxOrGetCachedResult(ptx, cc_major, cc_minor);

  auto thunk_schedule = absl::make_unique<ThunkSchedule>(
      ir_emitter.ConsumeThunkSequence(), std::move(stream_assignment),
      hlo_schedule->ThunkLaunchOrder());
  VLOG(2) << "Printing the thunk schedule...";
  XLA_VLOG_LINES(2, thunk_schedule->ToString());

  std::unique_ptr<HloProfileIndexMap> profile_index_map;
  std::unique_ptr<HloProfilePrinterData> profile_printer;

  if (module->config().hlo_profiling_enabled()) {
    HloCostAnalysis cost_analysis(ShapeSizeBytesFunction());
    cost_analysis.set_bytes_per_second(
        stream_exec->GetDeviceDescription().memory_bandwidth());
    TF_RETURN_IF_ERROR(module->entry_computation()->Accept(&cost_analysis));
    profile_index_map = absl::make_unique<HloProfileIndexMap>(*module);
    profile_printer =
        CreateHloProfilePrinterData(*profile_index_map, cost_analysis);
  }

  auto* gpu_executable = new GpuExecutable(
      ptx, cubin, {cc_major, cc_minor}, std::move(thunk_schedule),
      std::move(module), std::move(buffer_assignment),
      std::move(profile_printer), std::move(profile_index_map));
  if (embed_ir_in_executable) {
    DCHECK_NE("", ir_module_string_before_opt);
    gpu_executable->set_ir_module_string(ir_module_string_before_opt);
  }
  return std::unique_ptr<Executable>(gpu_executable);
}

std::vector<uint8> NVPTXCompiler::CompilePtxOrGetCachedResult(const string& ptx,
                                                              int cc_major,
                                                              int cc_minor) {
  XLA_SCOPED_LOGGING_TIMER("NVPTXCompiler::CompilePtxOrGetCachedResult");
  tracing::ScopedActivity activity("PTX->CUBIN", /*is_expensive=*/true);
  bool inserted;
  decltype(compilation_cache_.begin()) iter;
  // Pointers into compilation_cache_ where the ptx and (optional) cubin are
  // stored.
  const string* cache_ptx = nullptr;
  CompilationCacheValue* cache_value = nullptr;

  {
    tensorflow::mutex_lock lock(mutex_);
    std::tie(iter, inserted) = compilation_cache_.emplace(
        std::piecewise_construct,
        std::forward_as_tuple(ptx, cc_major, cc_minor),
        std::forward_as_tuple());
    cache_ptx = &iter->first.ptx;
    cache_value = &iter->second;
  }

  // Compile the ptx if it wasn't in the cache before we called this function.
  // Other threads asking for the same compilation key will block on
  // cache_value->mutex_ until compilation is done.
  {
    tensorflow::mutex_lock lock(cache_value->mutex_);
    if (inserted) {
      CHECK(!cache_value->compilation_done);
      if (!ptx.empty()) {
        StatusOr<std::vector<uint8>> maybe_cubin =
            CompilePtx(*cache_ptx, cc_major, cc_minor);
        if (maybe_cubin.ok()) {
          cache_value->cubin_data = std::move(maybe_cubin).ValueOrDie();
          VLOG(2) << "Compiled PTX size:" << ptx.size()
                  << " CUBIN size: " << cache_value->cubin_data.size();
        } else {
          bool log_warning = true;
          if (maybe_cubin.status().code() ==
              tensorflow::error::Code::NOT_FOUND) {
            // Missing ptxas is expected in some environments where CUDA SDK
            // binaries are not available. We don't want to spam logs with
            // identical warnings in this case.

            // TODO(zhengxq): we should implement a LOG_FIRST_N and LOG_EVERY_N
            // for more general usage.
            static std::atomic<bool> warning_done(false);
            log_warning = !warning_done.exchange(true);
          }
          if (log_warning) {
            LOG(WARNING)
                << "Failed to compile ptx to cubin.  Will attempt to let "
                   "GPU driver compile the ptx. "
                << maybe_cubin.status();
          }

          // We're going to use the driver to JIT our PTX->SASS, so warn if
          // the JIT in the driver has known bugs.
          WarnIfBadDriverJITVersion();
        }
      }
      cache_value->compilation_done = true;
      cache_value->compilation_done_cv_.notify_all();
    } else {
      while (!cache_value->compilation_done) {
        cache_value->compilation_done_cv_.wait(lock);
      }
    }
  }

  CHECK(cache_value != nullptr);
  CHECK(cache_value->compilation_done);
  return cache_value->cubin_data;
}

StatusOr<std::vector<std::unique_ptr<AotCompilationResult>>>
NVPTXCompiler::CompileAheadOfTime(
    std::vector<std::unique_ptr<HloModule>> module,
    const AotCompilationOptions& options) {
  return Unimplemented(
      "not yet implemented: NVPTXCompiler::CompileAheadOfTime");
}

se::Platform::Id NVPTXCompiler::PlatformId() const {
  return se::cuda::kCudaPlatformId;
}

}  // namespace gpu
}  // namespace xla

static bool InitModule() {
  xla::Compiler::RegisterCompilerFactory(
      stream_executor::cuda::kCudaPlatformId,
      []() { return absl::make_unique<xla::gpu::NVPTXCompiler>(); });
  return true;
}
static bool module_initialized = InitModule();